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Abstract  

Magnetic materials encompass a broad range of materials, which are applied in a 

diversity of fields. For example, magnetic materials are key component of motors, power 

generators, and spintronic devices. Even though there is a several type of magnetic materials, 

due to some issues at practical level, the demand of finding new magnetic material is still in 

need. To identify new magnetic materials, first-principles calculations are indeed faster, safer, 

and resource-saving compared to experiments. Among several classes of materials, Heusler 

compounds stand out as potential candidates in terms of material designs with an extensive 

tunability which can be tailored by varying chemical substitutions and structural motifs. In this 

work, using density functional theory (DFT), the magnetic and electronic properties of 

hypothetical Heusler compounds are predicted and attention is paid to half-metallicity,  

permanent magnetism, and anomalous Hall effect.  

 This dissertation is organized as follow. In the chapter 1, we present a brief 

introduction of Heusler compounds. We shed light on overview of Heusler compounds such as 

definitions, chemical formulars, and types of Heusler compounds. Finally, we discuss the 

concept of half-metallicity, permanent magnetism, and anomalous Hall conductivity.    

 In the chapter 2, we present an overview of density functional theory (DFT) by 

describing the theoretical foundations, advantages, and drawbacks due to approximation in 

exchange-correlation functional. 

 The chapter 3 aims to perform a systematic density functional study on alkali-metal-

based half-Heusler compounds, namely ACrZ (A = Li, Na, and K; Z = As, Sb, and P), to 

identify the optimal half-metal (HM) for practical applications. Unlike most HMs proposed so 
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far, the majority of ACrZ compounds in our study exhibit a wide band gap (1.60-2.38 eV) and 

retain robust half-metallicity even at the surface. Furthermore, the half-metallicity is robust 

under severe strain, up to 10 % , their stability, robust half-metallicity at the surface and under 

strain, and good lattice mismatch with zinc-blende semiconductors, we propose LiCrZ and 

NaCrZ (Z = As and Sb) as promising compounds for practical applications to spintronics. 

 In the chapter 4, due to the high price and limited source of rare earth (RE) elements 

and heavy metals (HM), demand for finding new permanent magnets (PM) without including 

4d and 5d HM or RE elements is growing fast. A large saturation magnetization 𝜇!𝑀" and 

uniaxial magnetocrystalline anisotropy Ku (Ku > 0) are demanded as necessary conditions to 

be a PM.  We theoretically investigate structural stability and intrinsic magnetic properties of 

Fe2MnSn Heusler compound, adopting cubic, tetragonal, and hexagonal, to identify a new 

potential PM. The most stable phase is hexagonal, followed by inverse tetragonal, inverse cubic, 

and regular cubic. The large enough magnetization 𝜇!𝑀" of 1.28 T−1.59 T is predicted, for 

all structure phases. The inverse tetragonal phase with an uniaxial Ku of 2.36 MJ·m3 is more 

desirable to be PM compared to hexagonal one with a biaxial Ku of −0.72 MJ·m3. Furthermore, 

inverse tetragonal phase can be stabilized by H and N interstitial doping, indicated by negative 

formation energies of -8.55 and -35.19 kJ·mol-1. Particularly, on the one hand, H has better 

intrinsic magnetic properties [𝜇!𝑀" = 1.66 T, 𝐾# = 1.66 MJ·m3, (BH)max = 56 MGOe, and 𝜅 

= 0.93] than N [𝜇!𝑀" = 1.36 T, 𝐾# = 1.07 MJ·m3, (BH)max = 46 MGOe, and 𝜅 = 0.73]. On 
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the other, N shows a better thermal stability since even having higher formation energy than 

hexagonal phase by 5.03 kJ·mol-1.   

Recently, it was shown that anomalous Hall conductivity (AHC) can be tailored via 

tuning Berry curvature curvature regardless of magnetization, which may pave a new way to 

achieve large AHC without net magnetic moment. In the chapter 5, using the PAW and 

FLAPW methods implemented in VASP and Fleur codes, AHC of a ferrimagnet quaternary 

Heusler compounds TiZrMnAl is investigated. Among three possible structural phases, ⍺-

phase is energetically most stable, by energy differences of 0.34 eV/fu and 0.03 eV/fu 

compared to β and 𝛾-phase. The local magnetic moment of Mn is antialigned with those of Ti 

and Zr. As a result, total magnetic moment is fully compensated (mtot = 0.0 𝜇$) in ⍺- and β-

phase, and nearly compensated (mtot = 0.1 𝜇$) in 𝛾-phase. Interestingly, ⍺-phase possesses a 

large AHC of 1470 W-1cm-1, while β- and 𝛾-phase show moderate AHC of 200 and          

100 W-1cm-1, consistently in both the PAW and FLAPW methods. The large AHC in ⍺-phase 

is discussed based on the global Berry curvature over whole Brillouin zone.     
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Chapter 1: Introduction   

The introductory chapter is divided into two parts. The first part of chapter discusses basis 

concepts relevant to Heusler compounds, types of Heusler compounds, their crystal structures, 

and our motivations of investigating this type of compounds. In the second part, half-metallicity, 

permanent magnetism, and anomalous Hall effects are briefly interpreted.  

1. 1. Heusler compounds 

Up to our knowledge, there is no absolute definition of Heusler compounds. 

“Covalency” and “tunability” are widely used to describe the main feature of this material’s 

class. Heusler compounds were named after Friedrich Heusler, a German mining engineer and 

chemist, who was the person discovered this type of compound in 1903. The first compounds 

were studied are CuMnSb, Cu2MnAl, and Cu2MnSn, that attracted attentions since yielding 

ferromagnetism even consisting of no magnetic elements. Nevertheless, Mn is an 

antiferromagnet material, but the concept of antiferromagnetism and ferrimagnetism are still 

unknown until 1930-1940. Up to now, Heusler compound’s family is extended to more than 

1500 members, including non-magnetic, ferrimagnetic, antiferromagnetic, and ferromagnetic 

materials. From electronic properties perspectives, Heusler compounds can exhibits a various 

type of properties such as multiferroics, half-metals, superconductivities, Weyl or Dirac 

semimetals, topological insulators and so forth. A huge family of Heusler compounds offer a 

wide playground to find prospective materials for several applications.  
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Based on chemical formulars, Heusler compounds can be catalogized as full-Heusler 

compounds X2YZ and half-Heusler XYZ [1-4]. Usually, X and Y are transitions metals (TMs) 

and Z is a main group sp-elements, and thus identified as TM-based Heusler compounds. In 

some cases, X or Y can be replaced by an alkali-metal, alkaline earth metal, or rare-earth 

element. Similarly, they can also name as alkali-metal-based Heusler compounds, alkaline-

earth-metal-based Heusler compounds, and rare-earth-based Heusler compounds. Recently, it 

was found that Z also can be replaced by a TM, therefore is called as all-d-metal Heusler 

compounds [5]. 

 From crystal structures point of view, Heusler compounds can have cubic, tetragonal, 

and hexagonal structural phases. Tetragonal and hexagonal structures are described by 

distorting cubic Heusler structure along with [001] and [111] direction. Next, we will go for a 

detail discussion on types Heusler compounds. The crystal structures of regular-Heusler, half-

Heusler, inverse Heusler are presented in Fig 1.1. We start with regular-Heusler structure in 

section 1. 1. 1.  

1. 1. 1 Regular-Heusler compounds 

X2YZ regular-Heusler compounds crystalize in centrosymmetric cubic L21 structure 

with space group of Fm3Nm) No. 225, which consisting of four interpenetrating fcc sublattice 

[3]. The X, Y, and Z atom occupy the Wyckoff position 8c (1/4, 1/4, 1/4), 4b (1/2, 1/2, 1/2), 

and 4a (0, 0, 0) respectively (Fig. 1.1 (a)). In particular, the X2 atoms locate at equivalent sites, 

forming a cubic primitive cell. In addition, adjacent cubes of X2 cubic sublattice are filled 

alternating by Y or Z atoms. 
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Fig. 1.1: Different types of Heusler structures. (a) Regular-Heusler, (b) Half-Heusler, (c) 

Inverse-Heusler. Red, blue, and grey balls stand for X, Y, and Z elements, respectively. Yellow 

and red differentiate XA and XB in inverse structures.  

1. 2. Half-Heusler compounds 

XYZ half-Heusler compounds adopt a non-centrosymmetric cubic C1b structure with 

the F43m space group (no. 216) [3]. XYZ half-Heusler can be obtained by removing half of 

the X atoms from L21 structure (Fig 1.1 (b)). This structure consists of three interpenetrating 

fcc sublattices (Fig. 1.1 (b)), each of which are occupied at 4a (0, 0, 0), 4b (1/2, 1/2, 1/2), and 

4c (1/4, 1/4, 1/4) Wyckoff positions. On the other hand, half-Heusler compounds can be 

described as the zinc-blend (ZB) structure with the octahedral voids are filled. There are three 

possible atomic arrangements of half-Heusler compounds corresponding to 𝛼, 𝛽, and 𝛾-phase. 

Especially, atom locates on 4a and 4c Wyckoff positions form a ZB sublattice whereas atoms 

occupy on 4b site fill the octahedral voids. 
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1. 1. 3. Inverse-Heusler compounds  

The inverse Heusler compounds has the same chemical formula with regular-Heusler 

compounds X2YZ but crystalize in cubic XA structure (space group F43m no. 216)[3]. The 

inverse Heusler structure is also can be obtained by switching one of X atom with Y or Z atom. 

Thus, X2 atoms locate at non-equivalent position. In detail, X atoms are placed on 4b (1/2, 1/2, 

1/2) and 4d (3/4, 3/4, 3/4) site, while Y and Z atom occupy 4c (1/4, 1/4, 1/4) and 4a (0, 0, 0) 

position, respectively. It is different to regular-Heusler structures that X atoms in inverse-

Heusler structures do not form simple cubic lattice (Fig. 1.1 (c)).   

1. 1. 4. Quaternary Heusler compounds  

Quaternary Heusler compounds is described by a composition of XX’YZ. It is different 

to regular (inverse) Heusler structure is that one of two X atoms in X2YZ compounds is 

substituted by another TM X’. Quaternary Heusler XX’YZ has co-called LiMgPdSn-type 

structure with space group F43m (216) [3]. It is similar to regular (inverse) Heusler structure 

that the structure of quaternary Heusler compounds consist of four interpenetrating cubic 

sublattice with 4 occupied Wyckoff positions 4a (0, 0, 0), 4c (1/4, 1/4, 1/4), 4b (1/2, 1/2, 1/2), 

and 4d (3/4, 3/4, 3/4). There are three possible atomic arrangements of quaternary Heusler 

compound, namely 𝛼, 𝛽, and 𝛾-phase.  
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1. 1. 5. Structural distortion in Heusler compounds  

Most of Heusler compounds X2YZ crystalize in cubic structure, however, sometimes, 

the cubic structure is unstable under distortion, and therefore, stabilizing in tetragonal or 

hexagonal structure. Crystal structures of (a) regular tetragonal, (b) inverse tetragonal, and (c) 

hexagonal are shown in Fig. 1.2.    

 

Fig. 1.2: Different types of distortion Heusler structures. (a) Regular tetragonal, (b) Inverse 

tetragonal (c) Hexagonal. Red, blue, and grey balls stand for X, Y, and Z elements, respectively. 

Yellow and red differentiate XA and XB in inverse structures.  

Tetragonal Heusler compounds can be obtained by elongating or compressing 

(inverse) regular cubic structure along [001] direction. The tetragonal (inverse) regular unit 

cells shown in Fig. 1. 2(a) and (b) are rotated 45° around the c-axis relative to the (inverse) 

regular cubic structures in Fig. 1. 1(a) and (c). The regular tetragonal structure has a space 

group I4/mmm (No. 139). Herein, the X atoms occupy 4d (0, 1/2, 1/4), the Y atoms are placed 
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at 2b (0, 0, 1/2) and 2a (0, 0, 0), respectively. Inverse tetragonal has a space group of I4Nm2 (No. 

119), it is similar to inverse cubic structure that X atoms also locate at non-equivalent positions. 

In detail, the first X atom sits on 2b (0, 0, 1/2), the second X atom and Y atom occupy 4d (0, 

1/2, 1/4) position, and Z atom is placed at 2d (0, 0, 0) position. 

It is similar to tetragonal phases that hexagonal phase also can be visualized as cubic 

distortion but along [111] direction. The hexagonal phase crystalizes in D019 structure with a 

space group P63/mmc (No. 194). In this structure, Fe and Mn share the same 6h (1/6, 1/3, 1/4) 

sites with 2/3 and 1/3 occupancy, and Z atom occupies 2c (1/3, 2/3, 1/4) sites [6-10].   
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1. 2. Half-metallicity, permanent magnetism, and anomalous Hall 

conductivity 

1. 2. 1. Ferromagnetic half-metallicity  

A systematic representation of the density of states of metals, semiconductors, and 

half-metals (HM) are shown in Fig. 1.3. HM is a class of material, in which one spin channel 

has metallic properties and the other one is semiconducting with a band gap, leading to the spin 

transport in only one channel [11,12]. The degree of spin-polarization (P) can be estimated as  

																																																																𝑃% =
𝑁(↑) − 𝑁(↓)
𝑁(↑) + 𝑁(↓)																																																				(1.1) 

where N is the density of states of at Fermi level EF of spin ↑ (↓) channels. Therefore, 100% P 

is expected in HMs, which can enhance efficiency of spintronic devices, such as magnetic 

tunnel junctions.  

One of the most important features of HM is the integral number of total magnetic 

moment per formula unit. This stems from total valence electron Zv is equal to the total number 

of occupied electrons in the majority states n(↑) and minority states n(↓): 

                             𝑍E = 𝑛(↑) + 	𝑛(↓)                          (1.2) 

Total magnetic moment mt can be estimated as: 

                              𝑚F = 	𝑛(↑) − 𝑛(↓)                         (1.3) 

From (1) and (2): 
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                      𝑀F = l𝑛(↑) + 	𝑛(↓)m − 	2𝑛(↓) = 𝑍G − 2𝑛(↓)            (1.4) 

The integral total magnetic moment mt of HM is a consequence of integral total number of 

electrons as well as integral number of electrons for the semiconducting spin channel.  

 

 

Fig. 1.3: Schematic representation of the density of states of a HM compared to a metal, and 

semiconductor. 
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1. 2. 2. Permanent magnetism  

Permanent magnets (PMs) create a persistent magnetic field in free space without the 

continuous expenditure of electric or other forms of energy, playing a vital role in many areas 

of technology, such as magnetic energy converter-motors, actuators, or generators [13,14]. The 

hysteresis loop B(M)-H loop of a PM, that represents the relationship between induced 

magnetic flux density B and magnetizing force H, is shown in Fig. 1. 4 [15] . Herein, the 

coercivity Hc is a measure of the reversed field required to drive the magnetization to zero after 

being saturated, and the remanence Br is a measure of the remaining magnetization when the 

driving field is dropped to zero. The negative of the H field created by the magnet on itself is 

defined as the demagnetizing field Hd, which depends on magnet shape. In the absence of 

external magnetic field, 𝐻 = 𝐻H , 𝑀 = 𝑀H , the energy product (BH) is defined as follow 

[16,17]: 

 𝐻nn⃗ H =	−𝐷𝑀Innnnn⃑ ; 𝐵n⃑ = 𝜇!l𝑀Innnnn⃑ + 	𝐻Hnnnnn⃑ m = 𝜇!(1 − 𝐷)𝑀Innnnn⃑ ; 

         (𝐵𝐻) = 𝜇!𝐷(1 − 𝐷)𝑀I
*                        (1.5) 

where 𝐷  is the demagnetizing factor, which is larger than 0 and smaller than 1, i.e.,          

0 < 𝐷 < 1, depending on the shape of the magnet. When 𝐷 = ,
*
, (𝐵𝐻) reaches the maximum 

value:  

     (𝐵𝐻)J)= =	
,
K
𝜇!𝑀"

*                             (1.6) 

The maximum energy product (BH)max figure of merit, which evaluates the strength of 

magnetic flux a material generates per unit volume. (BH)max is equal to the biggest rectangle 
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described by the second quadrant of B(H) hysteresis loop (Fig. 1.4). In addition, PMs need to 

crystalize in a uniaxial crystal structure (tetragonal, hexagonal, or rhombohedral) to have 

magnetocrystalline anisotropy 𝐾# . A good PM material requires a high saturation 

magnetization 𝜇!𝑀" and a high coercive force 𝐻5 to prevent its being easily demagnetized by 

an external field. To attain 𝐻5, a uniaxial 𝐾# (𝐾# > 0), which indicates that the magnetization 

direction prefers to lie along the crystallographic symmetry axis [15], is demanded. Herein, 

𝜇!𝐻5 can be estimated as: 

                                 𝜇!𝐻5 = 	𝛼𝜇!𝐻) − 𝐷LMM𝑀"																																															(1.7)                           

where 𝛼 is the microstructure constant and 𝐷LMM is an effective local demagnetizing factor. 𝛼 

and 𝐷LMM are relatively small (< 1) and can be neglected. The anisotropic field 𝜇!𝐻) is the 

field that needed to saturate the magnetization in the hard-axis direction. In the context of 

intrinsic quantities, 𝜇!𝐻) can be estimated as: 𝜇!𝐻) =
*N"
O#

. Finally, the hard parameter 𝜅 is 

evaluated via the ratio of anisotropy (𝐾#) to magnetostatic energy (BH): 

				𝜅 = y
𝐾#
𝜇!𝑀"

*z
*

																																																										(1.8)	 

𝜅 (𝜅 > 1) is considered as the empirical criterion to define a PM material. However, semi-hard 

materials (0.5 < 𝜅 < 1) are also possible to be PM materials [16-18]. Physical properties of 

some typical permanent magnets are listed in table 1.1. In addition, a good PM needs a good 

thermal stability and high Curie temperature (TC) are required for practical applications.  
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Fig. 1.4: The hysteresis loop B (M)-H of a permanent magnet. Energy product (BH) is marked 

by the yellow rectangle area. 
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Table 1. 1. Physical properties of some typical permanent magnets [14,15,18]. 

 TC (K) 𝜇!𝑀P (T) (BH)max (MGOe) 𝐾# (MJ∙m-3) 𝜅 

Alnico 5 1210 1.38 46.24 0.68* 0.66 

BaFe12O19 740 0.48 5.56 0.33 1.35 

SmCo5 1020 1.08 29.03 17.2 4.30 

Sm2Co17 837 1.22 32.67 4.2 1.90 

Nd2Fe14B 588 1.58 65.00 17.2 1.54 

Sm2Fe17N3 749 1.55 59.00 4.20 2.13 

MnBi 628 0.73 13.19 4.90 1.46 

Fe16N2 810 2.41 144.76 8.60 0.43 

*shape anisotropy  
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1. 2. 3. Anomalous Hall effects 

In a non-magnetic material sample, when an external magnetic field is applied 

perpendicular to an applied electric current, due to Lorentz force, the current carriers are forced 

to move along the curve path [Fig 1.5(a)], giving rise to a transverse electric field [19]. This is 

called as the ordinary Hall effect. When the sample is ferromagnet, the phenomenon is referred 

to as anomalous Hall effect (AHE) as presented in Fig 1. 5(b). Notably, the ordinary Hall effect 

requires an external magnetic field, whereas the AHE requires only a magnetization. It is 

different to the ordinary Hall effect that electrons in AHE are predominantly deflected in one 

direction, resulting in an external current which absents in non-magnetic materials. The AHE 

is contributed by extrinsic and intrinsic factors. Apart from extrinsic contribution from 

impurity, in this dissertation, we focus on intrinsic contribution. The intrinsic contribution to 

anomalous Hall conductivity can be given by the Kubo formula as following: 

𝜎=> =
𝑒*

ℏ ~ �
𝑑Q𝑘
(2𝜋)Q$R?$S?

𝑓[𝜀?(𝒌)] ×
2𝐼𝑚 ��𝑢?𝒌�𝜕U%𝐻�(𝒌)�𝑢?$𝒌� �𝑢?$𝒌�𝜕U&𝐻�(𝒌)�𝑢?𝒌��

[𝜀?(𝒌) − 𝜀?$(𝒌)]*
	(1.9) 

Here 𝑓[𝜀?(𝒌)] is the Fermi-Dirac distribution function, |𝑢?𝒌⟩ represents the periodic part of 

the nth Bloch state. 𝜀?(𝒌) is the eigenvalue for the nth eigenstates of |𝑢?𝒌⟩ at the k point, 

and 𝛻𝒌𝐻�(𝒌) ℏ⁄  is the velocity operator. Since 𝛻𝒌�𝑢?𝒌�𝜕U%𝐻�(𝒌)�𝑢?$𝒌� = 0  and 

𝛻𝒌⟨𝑢?𝒌|𝑢?$𝒌⟩ = 0, therefore: 

																																																					
�𝑢?𝒌�𝛻U𝐻�(𝒌)�𝑢?$𝒌�
𝜀?(𝒌) − 𝜀?$(𝒌)

= ⟨𝛻𝒌𝑢?𝒌|𝑢?$𝒌⟩																																					(1.10)	 

and the AHC can be rewritten as:  
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																																													𝜎=> = −
𝑒*

ℏ ~�
𝑑Q𝑘
(2𝜋)Q$R?

𝑓[𝜀?(𝒌)]Ω?,=>
9 (𝒌)																											(1.11) 

where Ω?,=>
9 (𝒌) represents the z-component of Berry curvature of n-th band. The integration 

is taken over the Brillouin zone (BZ). The Berry curvature is defined int terms of the Berry 

connection Ω?,=>
9 (𝒌) = 	𝛻𝒌 × 𝑨?(𝑘), where 𝑨?(𝑘) = −𝑖⟨𝑢?𝒌|𝛻𝒌𝑢?𝒌⟩ [20].   

The time-reversal symmetry 𝑇�  flips the sign of the Berry curvature in BZ while 

reversing the sign of local moment vector k:   

                        Ω?,=>
9 (𝒌) = 	−Ω?,=>

9 (−𝒌)																																																	(1.12)       

That leads to the cancellation of the Berry curvature when integrated over the full BZ. 

Therefore, to achieve non-vanishing AHC, materials with broken time-reversal symmetry 𝑇�  

are required [21,22]. However, in cases of a simple collinear antiferromagnetic materials 

(AFM), the AHC is vanished despite of the broken 𝑇�. A simple-minded illustration of AHE in 

collinear AFM and ferrimagnet (FiM) are presented in Fig. 1. 5(c) and Fig. 1. 5(d). Due to the 

combined symmetry operation (𝑇�𝑂� ) of 𝑇�  and translation symmetry 𝑂� , even though 𝑇�  is 

broken, due to 𝑇�𝑂�, the Berry curvature is still reversed its sign, causing the absence of AHE 

in collinear AFM. In contrast, due to two different magnetic sublattices, the combination of 

𝑇�𝑂� does not reverse the sign of Berry curvature in FiM. As a result, AHE is found to survive 

in some non-collinear AFM or FiM. For example, collinear AFM regular Heusler compounds 

Ru2MnSi has a zero AHC [4] while compensated FiM inverse Heusler compounds Ti2MnAl 

has a non-negligible AHC of 300 Ω-1cm-1 [23].  
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Fig. 1.5: The illustration of (a) ordinary Hall effects, (b) anomalous Hall effects (AHE), (c) 

AHE in collinear antiferromagnet (AFM), and (d) AHE in ferrimagnet (FiM). In Fig. 1.5(d), 

blue and red arrow differentiate different magnetic sublattices in FiM. 
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Chapter 2: Computational method  

In this chapter, we review the very basics of density functional theory (DFT), starting 

from Schrödinger equation for many-body system. In principle, the electronic structure of a 

material can be obtained by solving the time-independent Schrödinger equation. In DFT, this 

complicated many-body problem that involves 3N degrees of freedom for N electrons can be 

reduced to an effective single-particle theory by treating the ground-state density as variables 

not many-body wave function. The root of DFT is given by Thomas and Fermi models [24,25]. 

The rigorous modern form of DFT is proposed afterward by Hohenberg and Kohn (1964) [26]. 

Herein, the interacting problem is treated as an auxiliary independent-particle problem with all 

many-body effects involved in an exchange-correlation functional. Finally, by including the 

local density approximation (LDA), Kohn and Sham successful develop the effective single-

particle equation [27], turning DFT into practical application in 1965.   
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1. 1. Basic equations for interacting electrons and nuclei 

Starting with a Hamiltonian for the system of electrons and nuclear [28]. Here, the 

Hamiltonian is equal to a sum of kinetic energy of electrons 𝑇�L(𝒓𝒊) (the first term), the potential 

energy of nuclear-electron Coulomb interaction 𝑉�WL(𝑹𝑰,𝒓𝒊) (the second term), the potential 

energy of electron-electron Coulomb interaction 𝑉�LL(𝒓𝒊) (the third term), the kinetic energy of 

the nuclear 𝑇�W(𝑹𝑰) (the fourth term), and nuclear-nuclear Coulomb interaction 𝑉�WW(𝑹𝑰) (the 

last term).  

𝐻� = −
ℏ*

2𝑚L
~∇Y* +~

−𝑍Z𝑒*

|𝒓𝒊 − 𝑹𝑰|
+
1
2~

𝑒*

�𝒓𝒊 − 𝒓𝒋�YS\

−
Y,ZY

~
ℏ*

2𝑀ZZ

𝛻Z* +
1
2	~

𝑒*

�𝑹𝒊 − 𝑹𝒋�ZS]

				(2.1) 

where electrons are denoted by lower case subscripts and nuclear, with charge 𝑍Z and mass 

𝑀Z, denoted by upper cases subscript. The eigenfunctions and eigenvalues of this Hamiltonian 

can be obtained by solving time-independent Schrödinger equation: 

                             𝐻�𝜓(𝑹𝑰, 𝒓𝒊) = 	𝐸𝜓(𝑹𝑰, 𝒓𝒊)                    (2.2) 

where 𝐸 is the eigenvalue, and 𝐸𝜓(𝑹𝑰, 𝒓𝒊) is the corresponding wave function. According 

to the Born-Oppenheimer approximation [29], since the mass of an electron is very light 

compared with the nuclear (^'
2(
≪ 1), then the nuclear motion is much slower than electron 

motion and can be fixed. Thus, the electronic wave function can be expressed as:  

𝜓(𝑹𝑰, 𝒓𝒊) = 𝜙L(𝑹𝑰, 𝒓𝒊)𝜙W(𝑹)                    (2.3) 

Herein, 𝜙W(𝑹) is a nucleus function and 𝜙L(𝑹𝑰, 𝒓𝒊) is an electronic wavefunction depending 

on the position of nuclear. Assuming that the mass of nuclear is infinity, the kinetic energy of 
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nuclear can be omitted and the nuclear-nuclear Coulomb interaction only works as an external 

factor. Thus, the Hamiltonian of an electronic structure can be described by: 

		H� = 	𝑇�L(𝒓𝒊) + 𝑉�WL(𝑹𝑰, 𝒓𝒊) +	𝑉�LL(𝒓𝒊)                    (2.4) 

Therefore, the electronic wave function 𝜙L(𝑹𝑰, 𝒓𝒊) is solved by a set of nuclear coordinates: 

      H�L𝜙L(𝑹𝑰, 𝒓𝒊)¢𝑇�L(𝒓𝒊) + 𝑉�WL(𝑹𝑰, 𝒓𝒊)+	𝑉�LL(𝒓𝒊)£𝜙L(𝑹𝑰, 𝒓𝒊) = 𝐸L𝜙L(𝑹𝑰, 𝒓𝒊)      (2.5) 

Adopting Hartree atomic unit ℏ = 𝑚L = 𝑒 = K+
_)
= 1, equation (2.5) can be rewrite in the 

simplest form:  

										¤~
−1
2 ∇Y* −

Y

~𝑉Z(|𝒓𝒊 − 𝑹𝑰|) +~
1

�𝑟Y − 𝑟\�YS\Y,Z

¦𝜙L(𝑹𝑰, 𝒓𝒊) = 	𝐸L𝜙L(𝑹𝑰, 𝒓𝒊)													(2.6)	 

2. 2. Thomas-Fermi-Dirac approximation  

The Thomas-Fermi (TF) model is considered as modern DFT precursor since the 

approach describes electron density 𝑛(𝒓) of N numbers of electrons: 

∫𝑑Q 𝒓	𝑛(𝒓) = 𝑁                        (2.7)                     

as basic variable instead of wave function. Basic ideal of TF model is approximating kinetic 

energy for inhomogeneous systems as locally homogeneous [24,25]. The TF model neglects 

the exchange energy of electron due to the Pauli principle. Therefore, the ground-state energy 

𝐸`.[𝑛(𝑟)] for electrons in an external potential is written as following: 

       𝐸`.[𝑛] = 𝑇� + 𝑉�LW +	𝑉�LL 	 

																														= 	𝐶, ∫𝑛(𝒓)
*
+𝑑Q𝒓 +	∫𝑛(𝒓)	𝑉L=F(𝒓)𝑑Q𝒓	+

,
*∫ 𝑑

Q 𝑟𝑑Q𝑟
<,
(𝒓),0𝒓$1
2𝒓3𝒓$2        (2.8) 

where the first term is the local approximation to the kinetic energy of the ideal Fermi gas 

(Thomas-Fermi kinetic energy) with 𝐶, =
Q
,!
(3𝜋*)

!
+ = 2.871 in the atomic unit. The second 
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term is the classical electrostatic nuclear-electron Coulomb interaction energy (classical 

electrostatic Hartree energy). Finally, the last term is the potential energy due to their mutual 

electronic repulsion. In 1930, the exchange energy term is added by Dirac [30] as a form of 

local exchange with 𝐶* = − Q
K
(3𝜋*)

4
+. The equation (2.8) can be expressed as: 

𝐶, ∫ 𝑛(𝒓)
*
+𝑑Q𝒓 + 𝐶* ∫𝑛(𝒓)

5
+𝑑Q𝒓 +	∫ 𝑛(𝒓)	𝑉L=F(𝒓)𝑑Q𝒓	+

,
*∫𝑑

Q 𝑟𝑑Q𝑟
<,
(𝒓),0𝒓$1
2𝒓3𝒓$2  (2.9)  

Herein, the ground state density and energy can be obtained using the method of Lagrange 

multiplier by an unconstrained minimization of the functional with the Lagrange multiplier 𝜇 

is the chemical potential: 

	𝛿{𝐸`.[𝑛] − 	𝜇(∫ 𝑑Q𝑟𝑛(𝑟) − 𝑁)}			               (2.10) 

In fact, due to lacking principal physics and chemistry quantities such as atomic shell 

structures and binding molecules, the kinetic energies in approximation form of Thomas-

Fermi-Dirac approximation fails to descript electrons in matter for almost realistic systems. 

However, the appearance of Thomas-Fermi-Dirac approximation laid the foundation for using 

electron density as variables in DFT.  

2. 3. Hohenberg-Kohn Theorems 

It is different to aforementioned approaches, that only applies to a problem of electron 

with fixed nuclear, Hohenberg-Kohn theorems can be applied for interacting electrons moving 

under the influences of an external potential 𝑉L=F(𝒓) [26]. Then the Hamiltonian is given by: 

																																						𝐻� = −
ℏ*

2𝑚L
~∇Y*

Y

+~𝑉L=F(𝒓𝒊)
Y

+
1
2~

𝑒*

�𝒓𝒊 − 𝒓𝒋�
																									(2.11)

YS\

 

where the first term and the second term indicate the kinetic and electron-electron interaction. 

DFT works based on two theorems as follows: 
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• Theorem I: For any system of interacting particles in an external potential 𝑉L=F(𝒓), 

the potential 𝑉L=F(𝒓) is determined uniquely, except for a constant, by the ground state 

particle density 𝑛!(𝒓).  

• Theorem II: A universal functional for the energy 𝐸[𝑛] in terms of the density 𝑛(𝒓) 

can be defined, valid for any external potential 𝑉L=F(𝒓). For any particular 𝑉L=F(𝒓), the 

exact ground state energy of the system is the global minimum value of this functional, 

and the density 𝑛(𝒓), and the density 𝑛(𝒓) that minimizes the functional is the exact 

ground state density 𝑛!(𝒓). 

In summary, according to Hohenberg-Kohn theorems, the ground state wave function 

𝜓!(𝑥,, 𝑥*…𝑥Q) is a functional of ground state electron density 𝑛!(𝒓). Herein, the electron 

density is expressed as:  

   𝑛(𝒓) = 	∫ 𝑑P4𝑑
Q𝑥*, 𝑑Q𝑥Q, … , 𝑑Q𝑥?|𝜓(𝑟, 𝑠,, 𝑥*, . . , 𝑥?)|*        (2.12) 

The ground state energy is also a functional of density: 

  𝐸! = 〈𝜓![𝑛!]�𝐻��𝜓![𝑛!]〉 = 𝐸[𝑛!]                   (2.13)  

The electron density that minimizes the energy functional is the ground state density 

	𝐸[𝑛!] ≤ 𝐸[𝑛]                        (2.14)  

2. 4. Kohn-Sham (KS) equations 

After the basic background of DFT is already provided, by using variational principle 

to derive the effective single-particle equations for the complicated many particle problems, 

Kohn and Sham makes DFT to be more practical. The Kohn-Sham (KS) equation reduces the 

interacting many-body problems into non-interacting single particle problem by adding the 
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exchange-correlation potential 𝜇a;(𝒓)  [27]. The ground state energy functional from 

Hohenberg-Kohn expression is rewritten as:   

        𝐸?[𝑛] = 	∫𝑉(𝒓)𝑛(𝒓)𝑑Q𝒓 + 𝐹[𝑛]  

															= 	∫ 𝑉(𝒓)𝑛(𝒓)𝑑Q𝒓 + 𝑇"[𝑛] +
,
* ∫

?(𝒓)?c𝒓$d
|𝒓f𝒓$|

𝑑Q𝒓𝑑Q𝒓< + 𝐸a;[𝑛]       (2.15) 

where 𝑇"[𝑛] is the kinetic energy of a system of non-interacting particles with density 𝑛(𝒓), 

and 𝐸a;[𝑛] is the exchange correlation energy of an interacting system with density 𝑛(𝒓). 

Following the condition ∫𝛿𝑛(𝒓)𝑑𝒓 = 0, Kohn and Sham proved that for a given 𝑉(𝒓)and 

𝜇a;(𝒓) , the calculated 𝑛(𝒓) of equation (2.15) is the same as the 𝑛(𝒓)  estimated from 

solving the Schrödinger equation for single-particle system. The Hamiltonian equation for the 

auxiliary non-interacting single-particle moving in the effective potential single particle 

potential 𝑉LMM(𝒓) in Hartree atomic in units ℏ = 𝑚L = 𝑒 = K+
_)
= 1 is written as: 

      	𝐻� = − ,
*
∇* + 𝑉LMM(𝒓)                      (2.16) 

For a N non-interacting particle system, the ground state energy can be obtained by solving the 

Schrödinger equation for non-interacting particle as following (KS equation): 

                       ¯− ,
*
∇* + 𝑉LMM(𝒓)°𝜓Y(𝒓) = 𝜀Y𝜓Y(𝒓)                (2.17) 

Herein, the electron density 𝑛(𝒓) of N the number of electrons, which is given by sums of 

squares of orbitals:  

																																																																										𝑛(𝒓) = 	~|ΨY|*
W

Y8,

																																																			(2.18) 

The exchange-correlation potential (or the exchange-correlation energy) is defined as: 

𝜇a;(𝒓) ≡
gh67[?]
g?(𝒓)

                      (2.19) 
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and the effective potential	𝑉LMM(𝒓) is given by: 

                  𝑉LMM(𝒓) = 𝑉k(𝑟) + ∫
?c𝒓$d
|𝒓f𝒓$|

𝑑𝒓< + 𝜇a;(𝒓)             (2.20) 

where 𝑉k(𝑟) is classical electrostatic Hartree energy. Since the 𝑉LMM(𝒓) depends on electron 

density 𝑛(𝒓), the KS equation needs to be solved self-consistently.  

2. 5. Local density approximation (LDA)   

Solids can be simply considered as close to the limit of homogeneous electron gas immersed 

in a uniform positive charge background [31,32]. Thus, basic idea of local density 

approximation (LDA) is considering the general inhomogeneous system as locally 

homogeneous but interacting electron gas with a density 𝑛(𝒓).  

The total exchange-correlation energy for spin-unpolarized system is given by: 

                    𝐸a;lmn[𝑛(𝒓)] = ∫𝑛(𝒓)𝜖a;opJpl𝑛(𝒓)m𝑑Q𝒓      

                             = ∫𝑑𝑟𝑛(𝒓)´𝜖al𝑛(𝒓)m +	𝜖;l𝑛(𝒓)mµ 

						= 	𝐸a[𝑛(𝑟)] + 𝐸;[𝑛(𝑟)]                    (2.21) 

And exchange-correlation potential: 

                      𝜇a;lmn =	 �
H
H?
¢𝑛𝜖a;opJp(𝑛)£�

?8?(𝒓)
                     (2.22) 

The energy density 𝜖a;opJp is only density dependent and can be decomposed into exchange 

energy density 𝜖al𝑛(𝒓)m  term and correlation energy density 𝜖;l𝑛(𝒓)m  term. 

Correspondingly, the exchange-correlation energy functional 𝐸a;lmn[𝑛(𝒓)] can also be treated 

as independent part of exchange energy functional 𝐸a[𝑛(𝒓)]  and correlation energy 

functional  𝐸;[𝑛(𝒓)]. The exchange energy density of homogeneous electron density of the 

homogeneous electron gas:  
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𝜖al𝑛(𝒓)m = − Q
K
¶Q
+
·
, Q⁄

𝑛(𝒓)
4
+	                  (2.23) 

The exchange energy functional part 𝐸a[𝑛(𝒓)] can be accurately described as [31,32]: 

𝐸a[𝑛(𝒓)] = 	∫ 𝑛(𝒓) 𝜖al𝑛(𝒓)m𝑑𝒓 = − Q
K
¶Q
+
·
, Q⁄

𝑛(𝒓)
5
+       (2.24) 

In contrast, for the correlation energy functional 𝐸;[𝑛(𝒓)] part, analytic expression only valid 

at low- and high-density, corresponding to infinitely weak and infinitely strong correlation limit.  

In the low-density limits, the correlation energy density 𝜖;  is given as: 

𝜖; =	
,
*
¯%)
I8
+ %)

I8
+ !⁄ +⋯°                       (2.25) 

In the high-density limits, the correlation energy density 𝜖;  is expressed as:  

𝜖; = 𝐴𝑙𝑜𝑔(𝑟P) + 𝐵 +	𝑟P(𝐶𝑙𝑜𝑔(𝑟P) + 𝐷)                 (2.26) 

Where 𝑟" is the Wigner-Seitz radius , which can be calculated proportional to the density 𝑛: 

                                𝑟" = ¶ Q
K+?

·
,/Q

                          (2.27) 

For the spin-polarized systems, the total exchange-correlation energy is expressed as:  

          𝐸a;lmn[(𝑛↑(𝒓), 𝑛↓(𝒓)	)] = ∫𝑛(𝒓)𝜖a;opJp(𝑛↑(𝒓), 𝑛↓(𝒓)	)𝑑Q𝒓        (2.28) 

Herein, the electron density 𝑛 = 	𝑛↑(𝒓) + 𝑛↓(𝒓), and exchange-correlation potential:  

                   𝜇a;lmn =	 �
g
g?
¢𝑛𝜖a;opJpl(𝑛↑(𝒓), 𝑛↓(𝒓)	)m£�

?↑8?↑(𝒓),?↓8?↓(𝒓)
      (2.29) 

The exact exchange correlation function is known in terms of the spin-unpolarized functional 

[33]: 

           𝐸a[𝑛↑(𝒓), 𝑛↓(𝒓)] =
,
*
(𝐸a[2𝑛↑(𝒓)] + 𝐸a[2𝑛↓(𝒓)])            (2.30) 

Fractional spin-polarization can be defined as:  

                              	𝜁(𝒓) = ?↑(𝒓)f?↓(𝒓)
?↑(𝒓)t?↓(𝒓)

                         (2.31) 
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where 𝜁 = 0  indicates the diamagnetic spin-unpolarized systems. Correspondingly, the 

exchange-correlation potential in LDA is given by: 

𝑉a;lmn =
gh<=>

g?(𝒓)
= 𝜖a;opJpl𝑛(𝒓)m + 𝑛(𝒓)

_67
?@A@c?(𝒓)d
g?(𝒓)

          (2.32) 

The simple and effective LDA approximation usually reproduces quite good structure 

properties such as densities of states and band structures. However, the LDA approach 

approximates the inhomogeneous system as a local constant density 𝑛(𝒓), leading to several 

issues. For example, when the density undergoes rapid changes such as in molecules, this 

approximation becomes inaccurately. In addition, The LDA is not free form spurious self-

interaction in Hartree term. Therefore, the LDA potential decays asymptotically with an 

exponential form. However, in fact, the exchange-correlation potential must decay slowly not 

rapidly, that leads to the too negative binding energies and too small ionization potentials.   



 

 

43 

2. 6. Generalized-gradient approximation (GGA)   

An improvement to LDA can be made by adopting the gradient of the density ∇𝑛(𝒓). 

The electron density is treated semi-locally, then so-called Generalized Gradient 

Approximation (GGA) [34-36]. The total exchange-correlation energy for spin-polarized 

system can be given by: 

    𝐸a;uun[𝑛↑(𝒓), 𝑛↓(𝒓)] = ∫ 𝑓(𝑛↑(𝒓), 𝑛↓(𝒓), ∇𝑛↑(𝒓), ∇𝑛↓(𝒓)	) 𝑑Q𝒓	 

    = ∫ 𝜖a;opJpl𝑛(𝒓)m𝐹a;𝑓(𝑛↑(𝒓), 𝑛↓(𝒓), ∇𝑛↑(𝒓), ∇𝑛↓(𝒓)	) 𝑑Q𝒓  (2.34) 

Herein, the 𝐹a;  is the enhancement factor with dimensionless quantity, which can be 

decomposed to exchange 𝐹a and correlation 𝐹;  part. In the limiting case:  

      𝑓(𝑛↑(𝒓), 𝑛↓(𝒓), 0, 0) = 𝑛(𝒓)𝜖a;opJpl𝑛↑(𝒓), 𝑛↓(𝒓)m          (2.35) 

For exchange energy part, spin-scaling relation exists:  

    𝐸a[𝑛↑, 𝑛↓] =
,
*
(𝐸a[2𝑛↑] + 𝐸a[2𝑛↓])                (2.36) 

Thus, we only need to define the spin-unpolarized cases.  

 LDA usually underrates the exchange energy among toms, GGA improves LDA and 

corrects the total energy of atoms, and then the binding energy increases. Furthermore, GGA 

also predicts more accurately in terms of lattice constants, bond lengths in molecules, and so 

forth. However, for both GGA and LDA approach does not get rid of the spurious self-

interaction, that leads to the wrong ground state for strongly correlated systems such as rare-

earth elements and transition metals oxides. Furthermore, the calculated band gaps are still 

underestimated compared to experiment values. Since there is still no precise solution, 

exchange-correlation energy approximation still is an active researching area.  
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2. 7. Solutions of Kohn-Sham equations 

 The schematic representation of the self-consistent loop for a solution of Kohn-

Shame equation is illustrated in Fig. 2. 1. 

 

 

Fig. 2.1: The flowchart of self-consistent calculation. 
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To solve the KS equation, for the first step, an initial electron density is evaluated from 

the superposition of atomic densities. Secondly, from estimated initial electron density, the 

effective potential 𝑉LMM(𝒓) is constructed. Next, the KS equation is solved by single particle 

eigenvalue and wave function, and then a new electron density is calculated. If new electron 

density does not meet the convergence condition, the calculations will be continuously back to 

the first step with a new electron density, that is generated by mixing with the calculated 

electron density from the previous iteration. The quantity of convergence condition is evaluated 

by the change of electron density, the total energy, the atomic force acting on atom, or a 

combination of all listed conditions, that need to be no larger than some fixed criteria. Set of 

self-consistent equations that will be solved simultaneously until the convergence is achieved.  

The categorization of first-principles calculation according to KS equation solution is 

shown in Fig 2. 2. (adopted from Erich Winner classification)[37]. The DFT is employed in 

this dissertation is VASP (plane wave and pseudopotential) [38,39] and FLAWP [40,41]. Their 

physics background is briefly given below.  
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Fig. 2.2: The classification of first-principles calculation [40] 
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2. 7. 1. Plane wave and pseudopotential  

The chemical bonds between atoms are formed by valence electrons while core 

electrons do not contribute. Therefore, once the bonding is formed, the wavefunction of valence 

electrons changes significantly, while core electrons have negligible effects. The core electrons 

are treated spherically symmetric. It is different from all-electron approach, where both core 

and valence electrons are taken into account, the pseudopotential scheme only considers the 

valence electrons and describes the valence electrons by pseudo-wavefunctions. The 

wavefunction function is expanded in form of linear combination of planewaves [41,42]: 

																																																									𝜓Y,𝒌(𝒓) =~𝑐Y , 𝑮 ¿
1
√Ω

𝑒Y(𝑮t𝒌)𝒓Á
𝑮

																																								(2.37) 
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2. 7. 2. FLAPW 

FLAPW is the full-potential linearized augmented-plane-wave (LAPW) method, 

providing very robust and precise results [43, 44]. The basis function of LAPW is employed in 

FLAPW method. The plane wave is treated in term of the spheres (muffin spherical) centered 

at each atomic site (r < S) and the remaining interstitial region (r > S):   

													𝜓𝒌,𝑮(𝑟) = Ã
expl(𝑖𝒌 + 𝑮)𝒓m																																																																r > S

~¶𝑎wJ
x,𝑮(𝒌)𝑢w

x(𝒓) + 𝑏wJ
x,𝑮(𝒌)�̇�w

x(𝒓)· 𝑌wJ(𝒓Éx)
w,J

											r < S														(2.38) 

However, the full-potential and change density are described without shape approximation in 

the interstitial region and inside the spherical muffin-tin approximation. 

																																																			𝑉(𝑟) =

⎩
⎪
⎨

⎪
⎧~𝐺Z𝑮 exp(𝑖𝑮𝒓) 											r > S

u

~𝑉O`𝑳 (r)𝑌l(𝒓É)
l

											r < S
																																				(2.39) 
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Chapter 3: Robust half-metallicities of alkali-metal-based 

half-Heusler compounds 

This chapter is written based on T. T. Hoang et al [42]. The half-metallicities of alkali-metals-

based Heusler compounds ACrZ (A = Li, Na, and K; Z = As, Sb, and P) were studied. Our 

results show that it is different from most of proposed HMs so far that the present compounds 

have wide band gaps (1.60 – 2.38 eV). Therefore, their half-metallicities are stable against 

external factors, such as thermal excitation, strains, and surface/interface effects.  

3. 1. Introduction  

Half-metals (HMs) are materials whose one spin channel behaves as semiconductor 

and the other behaves as metal [11,12]. The charge current in only one spin channel enhances 

the efficiency of spintronic devices, such as magnetic tunnel junctions [43,44]. Although HMs 

have been theoretically proposed in various materials, only a few have been confirmed 

experimentally [11]. Among the proposed HMs, Heusler compounds have attracted significant 

interest since their chemical composition can be altered for diverse functionalities [1,2]. Most 

of them also have high Curie temperature, T1  [45]. There are two types of Heusler 

compounds, half-Heusler and full-Heusler, conventionally denoted as XYZ and X2YZ, 

respectively. Herein, we focus on the half-Heusler compound XYZ and discuss its possible 

practical applications to spintronics. 

The first theoretically predicted HM is the half-Heusler compound NiMnSb [12], with 

an estimated band gap of ~0.48 eV in the minority spin channel [12,46]. A few years later, the 
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100% spin polarization (SP) of NiMnSb was confirmed at a low temperature (10K) [47]. 

However, its SP dropped significantly to nearly 50% at room temperature [48]. Subsequently, 

systematic density functional studies on XYZ have been performed intensively to find optimal 

HMs for practical applications [46,49], where X and Y are the transition elements and Z is an 

sp element. Even though some Co-based compounds are predicted to have wider band gaps 

than that of NiMnSb, most XYZ compounds have band gaps below 1 eV. HMs have also been 

predicted in certain X2YZ compounds (X = Co, Fe, Rh, and Ru; Y = Ti, V, Cr, Mn, and Fe; Z 

= Al, Ga, In, Tl, Ge, Sn, and Pb) [50]. Although some Co-based compounds were successfully 

synthesized [51,52], they failed to achieve high SP at room temperature [53-55], except for 

Co2MnSi [56]. The predicted narrow band gaps (0.2–0.5 eV) are the plausible origin of the 

failure [57]. 

The reduced SP has been attributed to thermal and surface/interface effects [11]. 

Thermal fluctuation may lead to spin depolarization at elevated temperatures [58-61]. At 

surfaces/interfaces, chemical composition, and symmetry different from bulk may also 

decrease SP [62-65]. Above all, materials with wide band gaps likely retain half-metallicities 

even under high temperatures and at surfaces/interfaces [11,66]. Most studies are dedicated to 

transition-metal (T)-based Heusler compounds. However, due to their relatively narrow band 

gaps they lose half-metallicity easily. Meanwhile, alkali-metal(A)-based Heusler compounds 

have been relatively overlooked, despite some meaningful theoretical works [67-73] have been 

done previously. Hereafter, we differentiate the A-based from the T-based compounds by 

denoting them as AYZ and TYZ (or T2YZ), respectively. LiMnSi is the first predicted AYZ to 

exhibit half-metallicity at a lattice constant expanded by 14% [67]. Subsequently, other AYZ, 

such as LiCrAs [68], NaCrAs [70], NaCrP [69], KMnP [71], and NaZrZ (Z = P, As, and Sb) 
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[72], were predicted to be HMs. Broadly, AYZ tends to show much wider band gaps than TYZ. 

For example, the band gap of NaCrP is 3.21 eV [69], while that of CoCrP is 1.34 eV [49]. 

Furthermore, NaCrAs preserves its half-metallicity at the (001), (010), and (111) surfaces with 

hydrogen adsorption [73]. It is also notable that CsCrS, where a VI element is employed for Z 

instead of a V element of the present ACrZ, shows the wide band gap of 1.926 eV with the 

large magnetic moment of 5𝜇$[76]. 

Herein, we extend systematic density functional study on the half-metallicities of 

alkali-metal-based half-Heulser compounds, i.e., ACrZ (A = Li, Na, and K; Z = As, Sb, and P). 

Most investigated ACrZ show half-metallicities with wide band gaps (1.60–2.38 eV) at their 

equilibrium lattice constants. The band gaps originate from the sublattice zinc-blende (ZB) CrZ. 

An alkali element serves to expand lattice constant, widens the band gap, and provides one 

more valence electron to the system. Further, the robustness of half-metallicity against strain 

and at surface/interface is analyzed to suggest optimal HMs for real applications. Moreover, 

formation energy is estimated and discussed for structural stability. 

3. 2. Structural models  

The half-Heusler and the regular full-Heusler compounds crystallize in the 

noncentrosymmetric cubic C1z  structure with the F43m (216) space group and in the 

centrosymmetric cubic L2, structure with the Fm3m (225) space group, respectively [74]. 

Regular X2YZ and α-phase XYZ are based on the rock-salt (RS) sublattice of YZ. The 

additional X in regular X2YZ (α-phase XYZ) occupy (every other) body center of the RS 

sublattice. Unlike the regular X2YZ, in XYZ, XY or XZ also form the RS sublattice. Three 

possible phases (α, β, and γ) of XYZ are listed in Table 3.1. The most stable β-phase is 
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presented in Fig. 3. 1(a) [67], where element Z is positioned in every other body-centered site 

of the RS structure of ACr. From another viewpoint, the β phase is based on the ZB structure 

of CrZ into which fcc A fits. 

Fig. 3. 1(b) represents an asymmetric slab of 14 layers exhibiting ACr-termination 

(ACr-term) and Z-termination (Z-term) to simulate two nonequivalent bulk terminations. 

Surface, subsurface, and center layer are denoted as (S), (S-1), and (C), respectively. The 

vacuum spacing of 15 Å between adjacent slabs eliminates any spurious interactions. The 

increased number of layers changes the physical properties negligibly, including magnetic 

moments (< 0.002 𝜇$) and interlayer distances (< 0.003 Å), implying that the 14 layers are 

thick enough to simulate the ACr- and Z-term surfaces. 

 

 

Table 3. 1. The possible phases of half-Heusler compound XYZ and their sublattice structuresa. 

Structure X Y Z rock-salt zinc-blende 

𝛼 4c 4b 4a YZ XY, XZ 

𝛽 4b 4a 4c XY YZ, XZ 

𝛾 4a 4c 4b XZ XY, YZ 
a The positions (4a, 4b, and 4c) are denoted in terms of the Wyckoff notation 
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Figure. 3. 1: (a) The 𝐶,- structure of the 𝛽-phase half-Heusler ACrZ compound and (b) 14 

ML slab to simulate ACr-term and Z-term ACrZ (001) surfaces. Red, blue, and green spheres 

represent A, Cr, and Z atoms, respectively. Surface, subsurface, and center layers are denoted 

by (S), (S-1), and (C), respectively.  
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3. 3. Computational details  

Density functional calculations are performed using Vienna Ab initio Simulation 

Package [38]. The generalized gradient approximation of the Perdew, Burke, and Ernzerhof 

[36] is used to analyze the exchange-correlation interaction within the projector augmented-

wave scheme [39]. An energy cutoff of 550 eV is used for the wave function expansion. For 

Brillouin zone integration, the k-point meshes of 15 × 15 × 15 and 21 × 21 × 1 in the 

Monkhorst–Pack scheme are employed for the bulk and surface calculations, respectively. 

Convergence for the number of k-points is tested critically. In the surface calculations, 

interlayer distances are relaxed with the force criteria of 1 × 10−3 eV/Å. 

3. 4. Results and discussions  

We first estimated the structural and magnetic phases of ACrZ from total energy 

calculations as functions of lattice constant. The results are presented in Fig. 3. 2. and Fig. 3. 

3. Table 3.2. summarizes the stable phase and energy difference between the AFM and FM 

states (ΔE = EAFM − EFM). FM is more stable than AFM over a wide range of lattice constants. 

Structurally, ACrZ is most stable in the b-phase, except for KCrSb, which prefers the g-phase. 

Even though the FM stability of a K-based compound is insensitive to the atomic number, with 

an increasing atomic number of Z, the FM state tends to stabilize further than the AFM state 

(Table 3. 2). The estimated equilibrium lattice constants in the FM states of ACrP are 5.69, 

6.15, and 6.75 Å; of ACrAs are 6.00, 6.37, and 6.94 Å; and of ACrSb are 6.42, 6.78, and 7.29 

Å for A = Li, Na, and K, respectively. The larger atomic numbers of A and Z result in the larger 

lattice constant.  
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Table 3. 2. Energy difference ΔE (meV/fu) between AFM and FM states, equilibrium lattice 

constant 𝑎 (Å), atom-projected magnetic moment (𝜇$), total magnetic moment per formula 

unit (𝜇$), band gap (eV) of minority spin state 𝐸%, and k-points of CBM and VBM of ACrZ. 

The asterisk (*) indicates pseudo band gap. 

 

 

 

  

Compound  phase ΔE 𝑎 𝑚;I  𝑚R 𝑚FpF  Eg CBM–VBM 

LiCrP b 27 5.69 3.35 –0.15 3.51 1.99* X–Γ 

NaCrP b 161 6.15 3.82 –0.19 4.00 2.28 X–L 

KCrP b 184 6.75 3.97 –0.25 4.00 2.38 X–X 

LiCrAs b 142 6.00 3.62 –0.12 3.98 1.90* X–Γ 

NaCrAs b 196 6.37 3.73 –0.18 4.00 2.18 X–L 

KCrAs b 187 6.94 3.88 –0.26 4.00 2.13 Γ–X 

LiCrSb b 231 6.42 3.67 –0.14 4.00 1.60 X–Γ 

NaCrSb b 222 6.78 3.79 –0.20 4.00 1.88 X–Γ 

KCrSb g 187 7.29 3.90 –0.24 4.00 2.17 X–L 
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Figure. 3. 2: Calculated total energy of half-Heusler ACrZ (A = Li, Na, and K; Z = P, As, and 

Sb) in ⍺-, β-, and 𝛾-phase as functions of lattice constant. 
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Figure. 3. 3: Calculated total energies of half-Heusler ACrZ (A = Li, Na, and K; Z = P, As, 

and Sb) in ⍺-, β-, and 𝛾-phase as functions of lattice constant a. 
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3. 4. 1. Magnetic properties  

The magnetic moments are listed in Table 3. 2. As expected, the magnetic moment of 

ACrZ corresponds mainly to the transition element Cr, while the contributions from other 

elements are negligible. Specifically, the magnetic moment of the alkali-element A is too small 

to be listed in Table II. The sp element Z has a negatively induced magnetic moment. Notably, 

unlike ACrZ with a small lattice constant, the one with a large lattice constant has an integer 

magnetic moment (in 𝜇$). Since the integer magnetic moment indicates half-metallicity, the 

lattice constant plays a crucial role in determining the half-metallicity of ACrZ, as discussed in 

the following subsections. 

The Slater–Pauling rules can estimate the magnetic moment of HMs [11]. The Slater–

Pauling rule for HM 𝛽-ACrZ is so-called “rule of 8”, expressed as 𝑚FpF = (𝑍F − 8) 𝜇$, 

where 𝑍F is the total number of valence electrons. By this rule, the magnetic moment of HM 

𝛽 -ACrZ is estimated as 4.00 𝜇$ , which is consistent with the observed first-principles 

calculations. We remind here that the magnetic moment of HM ZB-CrZ, a sublattice of 𝛽-

ACrZ (Fig. 3. 1(a)), is estimated as 3.00 𝜇$ by the same rule [75]. Thus, presumably, the 

alkali-element A provides one more valence electron to the system to enhance the magnetic 

moment by 1𝜇$. 

3. 4. 2. Band gap 

Fig. 3. 4. shows the band structures of ACrZ, indicating the half-metallicity character 

of ACrZ. Gray and black lines represent the majority and minority spin bands, respectively. 

The blue horizontal line indicates the Fermi level EF set to zero. Red lines mark the conduction 
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band minimum (CBM) and the valence band maximum (VBM) with an arrow suggesting the 

band gap width. The minority spin bands have gaps at 𝐸., except for LiCrP and LiCrAs, while 

the majority bands are metallic. In other words, ACrZ are HMs, except for LiCrP and LiCrAs. 

The estimated energy band gaps are listed in Table II. The asterisk on the value implies a 

pseudo band gap located at energy other than EF. Table II shows that the HM compound has 

an integer magnetic moment (in 𝜇$). 

The investigated ACrZ have much wider band gaps (1.60–2.38 eV) than previously 

reported HMs, including TYZ and T2YZ; namely, NiMnSb (~0.48 eV) [15,49], Co2MnSi (0.41 

eV), Co2MnGe (0.21 eV) [50], CrO2 (1.50 eV) [76], and Fe3O4 (0.50 eV) [77]. Most of the 

band gaps are indirect; CBM of ACrZ (but KCrAs) are located at the same k-point X, while 

their VBM are located at different k-points (Table II). Only KCrP has a direct band gap. 

Noteworthy, KCrSb almost has a direct band gap because of the negligible difference    

(~0.03 eV) between the maxima at the X and L points in the valence band of KCrSb. The 

external factors, such as heat, surface, and interface, may break the half-metallicity with a 

narrow band gap, suggesting the wide band gaps of ACrZ must be advantageous in real 

applications [14,69]. 
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Figure. 3. 4: Majority (gray) and minority (black) spin band structures of ACrZ (A = Li, Na, 

and K; Z = As, Sb, and P) at their equilibrium lattice constants. Red lines mark CBM and VBM. 

 

Figure. 3. 5: Band structures of ZB-CrP, ZB-CrAs, and ZB-CrSb in majority (gray) and 

minority (black) spin state of at their equilibrium lattice constants, 5.31, 5.66, and 6.14 Å. Red 

lines mark CBM and VBM. 
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3. 4. 3. Origin of wide band gap 

Now we discuss the origin of the relatively wide band gaps of ACrZ than those of the 

conventional TYZ. As listed in Table II, most ACrZ stabilizes in the 𝛽 phase, unlike TCrZ, 

which stabilizes in the 𝛼 -phase [67]. This phase difference results in different band gap 

formation mechanisms, as discussed in detail below. ZB-TCr provides the band gap of TCrZ 

[78,79], while the band gap of ACrZ will be seen to originate from ZB-CrZ. Three key facts 

are established from Table II: (i) a large A atom corresponds to a wide band gap of ACrZ, (ii) 

a large Z atom indicates a narrow band gap, and (iii) only ACrZ with a lattice constant larger 

than 6.00 Å are HMs. Therefore, the lattice constant plays a key role in determining the half-

metallicity of ACrZ. It is usually expected that a band gap formed between bonding and 

antibonding states is expected to narrow, as lattice constant increases. For example, a TCrZ 

compound, RuCrAs (𝑎 = 5.74 Å, 𝐸% = 0.58 eV) [46] has a considerably smaller band gap than 

FeCrAs (𝑎 = 5.48 Å, 𝐸% = 0.96 eV) [46,78]. However, the band gap of the present ACrZ 

widens with the lattice constant expansion.  

The origin of the wide band gap of ACrZ may be revealed by comparing their band 

structure with that of the sublattice ZB-CrZ (Fig. 1(a)). ZB-CrZ itself is known to be an HM at 

or near its equilibrium lattice constant [80], which is evident from our calculations on band 

structures of ZB-CrP, ZB-CrAs, and ZB-CrSb as presented in Fig. 3. 5. Here NaCrAs and   

ZB-CrAs are taken as representatives of ACrZ and ZB-CrZ, respectively. Fig. 3. 6. compares 

the orbital-resolved minority spin band structures of NaCrAs and ZB-CrAs, employing the 

same lattice constant of equilibrium a for NaCrAs. The band structure of NaCrAs is similar to 
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that of ZB-CrAs. It shows clearly that the origin of the band gap formation of NaCrAs is 

identical to that of ZB-CrAs. The d orbitals of Cr are split into 𝑡*%  and 𝑒%  states in the 

tetrahedral environment, where Cr (As) is surrounded by four nearest neighbors As (Cr).  

 

 

Figure. 3. 6: Orbital-resolved minority spin band structure of NaCrAs and ZB-CrAs at 

equilibrium lattice constant of	NaCrAs	𝑎  = 6.37 Å. Cr-𝑡*% , Cr-𝑒% , and As-p  orbitals are 

denoted in red, blue, and green, respectively. The symbol size is proportional to the weight of 

the orbital. The Fermi level 𝐸. is set to zero. 
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Figure. 3. 7: Orbital-resolved minority spin band structure of ZB-CrAs at 𝑎 = 5.66, 6.01, and 

6.37 Å, in which 5.66 and 6.37 are equilibrium lattice constant of ZB-CrAs and NaCrAs. Cr-

𝑡*%, Cr-𝑒%, and As-p orbitals are denoted in red, blue, and green, respectively. The symbol size 

is proportional to the weight of the orbital. The Fermi level 𝐸. is set to zero. 
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Hence, it may be enough for disclosing of the wide band gap of ACrZ to discuss the  

dependence of the band gap of CrAs on the lattice constant. According to the band gap 

formation of ZB-CrZ [75,80], the t*0 states of Cr form bonding and antibonding hybrid states 

with the p orbitals of As, while the e0 states remain comparatively nonbonding. The band gap 

is formed by As-p orbital (bonding) and Cr-t2g orbital (antibonding) states, as seen in Fig. 3. 6. 

The band gap of ZB-CrAs increases monotonically with lattice constant a, expanding it from 

5.66 Å (the equilibrium lattice constant of ZB-CrAs) to 6.37 Å (the equilibrium lattice constant 

of NaCrAs), as shown in Fig. 3. 7, Fig. 3. 8, and Fig. 3.9. The band gap of ZB-CrAs at the 

equilibrium lattice constant of NaCrAs reaches to 2.33 eV which is slightly wider than the band 

gap (2.18 eV) of NaCrAs. The lattice constant is expanded by the element A must be a key 

origin of the wide band gap of ACrZ. When a reaches 6.37 Å (equilibrium lattice constant of 

NaCrAs) from 5.66 Å, the band gap increases from 1.85 eV to 2.33 eV, which is slightly larger 

than the 2.18 eV of NaCrAs. Two factors compete in determining the width of band gap. First, 

the covalent bonding weakens as the lattice expands, thus the band gap tends to reduce the 

width of the gap. Another effect of the lattice expansion is to narrow the valence and conduction 

bands themselves, which effectively widens the band gap, as observed in the orbital-resolved 

density of states ZB-CrAs at 𝑎 = 5.66, 6.01, and 6.37 Å for minority spin states in Fig. 3. 9. 

To see the effects, the centers of the As-p VB, and Cr-t2g and Cr-eg CB are calculated from the 

orbital-decomposed DOS presented in Fig. 3. 9 and listed in Table 3. 3. As expected, separation 

between the centers of VB and CB decreases as the lattice increases due to weakened covalent 

bonding. However, separation between the edges of VB and CB increases because CB and VB 

narrow down as the lattice increases. The band gap widening by the narrowed bands is 

dominant over the band gap narrowing by the weakened covalent bonding in CrAs. Thus, the 
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band gap of CrAs increases as the lattice constant increases. The element A in ACrZ expands 

the lattice constant and provides one extra valence electron, which fills the spin-up bands but 

negligibly affects the spin-down band. Consequently, the band gap is widened with increased 

magnetic moment by 1 µ(	compared to ZB-CrZ. 

 

 

Figure. 3. 8: The band gap of ZB-CrAs as a function of lattice constant over the range between 

5.66 Å and 6.37 Å which are the lattice constants of ZB-CrAs and NaCrAs, respectively. 
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Figure. 3. 9: Orbital-resolved density of states of ZB-CrAs as the increases of lattice constant 

𝑎 = 5.66, 6.01, and 6.37 Å for minority spin states. The Fermi level 𝐸. is set to zero. Cr-𝑡*%, 

Cr- 𝑒% , and As- p  orbitals are denoted in red, blue, and green, respectively. Note that 

equilibrium lattice constants of ZB-CrAs and NaCrAs are 5.66 and 6.37 Å, respectively. 
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Table 3. 3: Center of CB Cr-t2g, CB Cr-eg, and VB As-p, and the separation ∆E (in eV) as the 

increases of lattice constant 𝑎 = 5.66, 6.01, and 6.37 Å. 

Lattice 

constant 

Center of 

CB Cr-t2g 

Center of 

CB Cr-eg 

Center of 

VB As-p 

 

ΔE 

Cr-t2g–As-p 
 

ΔE 

Cr-eg –As-p 

5.66 2.14 2.31 −2.19 4.33 4.50 

6.01 2.38 2.50 −1.76 4.17 4.26 

6.37 2.58 2.66 −1.39 3.97 4.05 

 

3. 4. 4. Formation Energy 

The structural stability estimated by formation energy is of crucial importance in 

practical applications. To investigate the structural stability, the formation energy of ACrZ 

against the decomposition into bcc A and ZB-CrZ is calculated using the following equation. 

                          E{|}^ = E~1}� − (E~ + E1}�)                           (3.1)  

where E~1}�, E~, and E1}� are the total energies of ACrZ, bcc A, and ZB-CrZ, respectively. 

The formation energy is much more conservative against decomposition into elements of A, 

Cr, and Z. The estimated formation energies of ACrP, ACrAs, and ACrSb (A = Li, Na, and K) 

are presented in Fig. 3. 10, where the role of A and Z elements are evident. The negative 

(positive) formation energy means that ACrZ is energetically more stable (unstable) against 

the composition into bcc A and ZB-CrZ. From Fig. 4, it is learnt that first, the atomic number 

of A plays a key role in determining the formation energy. The smallest Li and the largest K 
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led to negative and positive formation energies, respectively. Second, the larger Z element 

resulted in the more negative formation energy of ACrZ. Consequently, LiCrSb and KCrP 

shows the most and the least stable against the decomposition into bcc A and ZB-CrZ, 

respectively. 

 

Figure. 3. 10: Formation energies of ACrP, ACrAs, and ACrSb (A = Li, Na, and K). Left, 

middle, and right panel present ACrP, ACrAs, and ACrSb, respectively. Negative (positive) 

formation energy marked by red shade denotes a stable (unstable) structure. 

 

  



 

 

69 

3. 4. 5. Strain effects 

In practical applications to spintronics, magnetic materials are usually exposed to thin-

film under strain. Furthermore, strain is also utilized to tailor the electronic and magnetic 

properties of materials. Thus, investigating the in-plane strain effect on the half-metallicity of 

ACrZ is crucial. Energy variations in CBM (ECBM) and VBM (EVBM) against the strain are 

plotted in Fig. 3. 11. The in-plane strain is given by 𝜂 = )f))
))

, where a0 and a are equilibrium 

and strained ab plane lattice constants, respectively. The lattice constant c, shown in Fig. 3. 12. 

as c/a ratio, is optimized from total energy calculations. Fig. 3. 11. shows that the half-

metallicity of unstrained ACrZ is robust over a wide range of compressive and tensile strains, 

implying that HM ACrZ has a flexible advantage in forming hybrid systems with various 

semiconductors. Even non-HM LiCrP and LiCrAs become HM under specific tensile in-plane 

strain. LiCrAs also turn into HM under small tensile strain, around +2%. Thus, the proper 

choice of substrate can easily achieve the half-metallicity of LiCrAs.  

The ECBM and EVBM under in-plane strain are discussed for practical device design. Fig. 

3. 11. shows that ECBM and EVBM behave differently between the Li- and K-based compounds. 

The Na-based compounds show their mixed behavior. First, ECBM of the Li-based compounds 

(i.e., LiCrP, LiCrAs, and LiCrSb) is located just below or just above EF at 𝜂 = 0, while their 

EVBM is far below EF. On the other hand, EF of the K-based compounds (i.e., KCrP, KCrAs, 

and KCrSb) are positioned near the middle of ECBM and EVBM. Second, ECBM and EVBM of the 

Li-based compounds increase monotonically with 𝜂. As 𝜂 increases, the ECBM of LiCrP and 

LiCrAs shift above EF from just below EF, while their ECBM initially far below EF remain below 

EF. Consequently, non-HM LiCrP and LiCrAs at their equilibrium turn to HM under specific 
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tensile in-plane strain. Meanwhile, ECBM and EVBM behaviors of the K-based compounds are 

parabola-like with negative and positive curvatures, respectively. Interestingly, their ECBM and 

EVBM show maxima and minima near 𝜂 = 0 to have the widest band gaps for the K-based 

compounds near unstrained states. 

 

Figure. 3. 11: E1(2(in red) and E3(2 (in blue) of the minority spin states of ACrZ (A = Li, 

Na, and K; Z = As, Sb, and P) as a function of in-plane strain. Fermi level EF is set to be zero. 
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Figure. 3. 12: c/a ratio as a function of in-plain strain 𝜂 of ACrZ (A = Li, Na, and K; Z =P, As 

and Sb). 

 

 

 

 

  



 

 

72 

3. 4. 6. The (001) surfaces 

Practically, the magnetism and electronic structure at the surface/interface are more 

significant than in bulk. In real applications such as a magnetic tunnel junction, ACrZ is likely 

utilized in a hybrid with a semiconductor [81,82]. We considered only the surfaces of LiCrAs, 

LiCrSb, NaCrAs, and NaCrSb to examine the magnetism and the half-metallicity at the (001) 

surface and excluded other ACrZ due to their positive formation energies against the 

decomposition into bcc A and ZB-CrZ or non-half-metallicities. 

  Reasonably, InSb is a potential semiconductor for a hybrid system with LiCrAs, 

LiCrSb, NaCrAs, and NaCrSb since the experimental lattice constant (6.48 Å) [83] of InSb 

exhibits rather good mismatches of +8.00%, +1.37%, +0.93%, and −4.42%, respectively. For 

surface calculations, the lattice constant of InSb is considered the in-plane lattice constant. 

Two different terminations are plausible for the (001) surface: Z-term and ACr-term. 

As shown in Fig. 3. 1(b), a 14-layer slab is used to simulate the Z- and ACr-term surface. The 

bulk properties shown by the center layers confirm the sufficient thickness of the slab. The 

interlayer spacings are fully relaxed by minimizing total energy and force. The relaxed 

structures are shown in Fig. 3. 13, and the numerical values of interlayer spacings and 

corrugations near the surfaces are presented in Table 3. 4.  

At surface, constituent atoms are rearranged differently from the bulk counterpart 

because of broken bonding and broken translational symmetry along the surface normal. We 

fully relaxed the structures along the c-axis. In this study, the in-plane lattice constant of a 

potential substrate InSb is adopted. Atoms are relaxed according to the surface effect as well 

as the lattice mismatch between InSb and ACrZ. The Cr and Z positioned at the same plane in 
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bulk are relaxed in different ways at the surfaces so not to be placed at the same plane. The 

corrugation at ACr-term is more severe than at Z-term. The severe corrugation might be from 

the different valence electron characters of the Cr and A elements, i.e., d and s characters. The 

less localized A-s electron prefers spilling out into a vacuum to reduce its kinetic energy, while 

the relatively directional character of the Cr-d electron prefers staying inside to minimize 

energy at the expense of coming from a dangling bond. 

  We present the evaluated magnetic moments of Cr and Z at the surface (S) and 

subsurface (S-1) layers in Table 3.5, with the center layers (C) listed for comparison. Due to 

the reduced coordination number at the surfaces, the corresponding magnetic moments of the 

atoms are generally enhanced compared to those in the center layers. The magnetic moments 

of Cr(S) at the ACr-term surfaces of LiCrAs(Sb) and NaCrAs(Sb) increased by 7.10% (7.26%) 

and 11.23% (7.00%), respectively, and the magnetic moments of the subsurface Cr(S-1) atoms 

of the Z-term surfaces reduced by 14.75% (11.02%) and 15.30% (11.59%), respectively, 

compared to those of the center Cr layers. The magnetic moments of Z show a similar trend, 

enhanced, and reduced at the surfaces and the subsurfaces, respectively, compared to those of 

the center Z layers. 

  The left and right columns in Fig. 3. 14. represent the two-dimensional minority spin 

bands of LiCrAs(Sb) and NaCrAs(Sb), respectively, to investigate the half-metallicity at the 

(001) surface. The bands originated from Z(S) and Cr(S-1) of Z-term are indicated in green 

and blue, and those from Cr(S) and Z(S-1) of ACr-term are shown in red and orange, 

respectively. Other bands are plotted in gray. Fig. 3. 14. demonstrates robust half-metallicity 

at Z-term but broken one at ACr-term. The severe corrugation at ACr-term shifts down the 

Cr(S) band crossing the Fermi level EF. In practical devices, the ACrZ compounds can be 
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utilized an interfacial structure with various semiconductors. For example, at an interface ACrZ 

with InSb, naturally InZ and CrSb bonding are expected to form at Z-term and the ACr-term, 

respectively. In the interfacial structures, the bulk-like half-metallicities would recover even 

for the broken half-metallicity at ACr-term. 

  Table 3. 6. lists the calculated band gaps at Z-term and the center layer. For comparison, 

the band gaps of the strained bulk LiCrAs (+8.00%), NaCrAs (+1.37%), LiCrSb (+0.93%), and 

NaCrSb (−4.42%) are also presented. The band gaps of Z-term LiCrAs, NaCrAs, LiCrSb, and 

NaCrSb are 1.32, 1.41, 1.10, and 1.12 eV, respectively, slightly smaller compared to the bulk-

like center layers (Table 3. 6). The band gap values of the center layers are very close to that 

of the strained bulk ones. These findings reconfirm that the 14-layer slab is sufficiently thick 

to describe a bulk surface.  
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Figure. 3. 13: The schematic diagram of interlayer spacing dij and corrugation 𝛥zi for Z-term 

and ACr-term. The subscript 1, 2, 3, and c denote first, second, third layers from the surface, 

and the center layer, respectively. 
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Figure. 3. 14: Atom-resolved minority spin band structure of ACrZ (A = Li and Na; Z = As 

and Sb) at Z-term and ACr-term (001) surfaces. The Fermi level 𝐸. is set to zero. 
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Table 3. 4: Interlayer spacing dij  (in Å) and corrugation 𝛥z i for Z-term and ACr-term, 

respectively. The subscript 1, 2, 3, and c denote first, second, third layers from the surface, and 

the center layer, respectively. 

  
LiCrAs NaCrAs LiCrSb NaCrSb 

Z-term 𝑑12 0.62 0.98 1.27 1.44 

 𝑑23 1.23 1.49 1.39 1.69 

 𝛥𝑧* 0.29 0.02 0.01 0.01 

Center 𝑑5 1.29 1.48 1.43 1.62 

ACr-term 𝑑12 1.12 1.38 1.39 1.73 

 𝑑23 1.39 1.46 1.45 1.68 

 𝛥𝑧, 0.77 1.34 0.44 1.07 

 𝛥𝑧Q −0.40 −0.81 −0.08 −0.10 
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Table 3. 5: Layer-resolved magnetic moment (in 𝜇$) of ACrZ (A = Li, Na; Z = As, Sb) for 

(001) surface of both Z-term and ACr-term.a 

 

Table 3. 6: The band gaps (in eV) of ACrZ (A = Li and Na; Z = As and Sb) of the Z-term 

(001) surface, the bulk-like center layer, and the strained bulk.b 

 

 

  

  
LiCrAs NaCrAs LiCrSb NaCrSb 

Z-term Z(S) –0.27 –0.37 –0.29 –0.38 

 Cr(S-1) 3.12 3.31 3.09 3.28 

Center Z(C) –0.14 –0.18 –0.13 –0.17 

 Cr(C) 3.66 3.72 3.65 3.71 

ACr-term Cr(S) 3.92 3.99 4.06 3.97 

 Z(S-1) –0.09 –0.11 –0.08 –0.13 

aExperimental lattice constant of InSb (6.48 Å) is employed for the two-dimensional lattice constant of the surface 

 
LiCrAs NaCrAs LiCrSb NaCrSb 

Z-term 1.32 1.41 1.10 1.12 

Center 1.82 2.10 1.58 1.76 

Strained bulk 1.80 2.11 1.59 1.75 

b The values of the strained bulk are estimated from Fig. 3. 11 
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3. 5. Summary  

We have studied the half-metallicity of alkali-metals-based half-Heusler, i.e., ACrZ 

(A = Li, Na, and K; Z = P, As, and Sb), compounds. ACrZ, except for LiCrP and LiCrAs, are 

predicted to be HMs with wide band gaps in the range of 1.60 – 2.16 eV, which would be 

advantageous for their practical applications. HM ACrZ have an integer total magnetic moment 

𝑚FpF  = 4.00 𝜇$ , larger than the corresponding ZB-CrZ by 1 𝜇$ , achieved from one more 

valence electron provided by the element A. Meanwhile, LiCrP and LiCrA showed magnetic 

moments below 4.00 𝜇$, which is 3.51 and 3.99 𝜇$, respectively, since their minority spin 

CBM is positioned just below the Fermi level EF. 

The band gap formation mechanism of ACrZ is identified to be similar to that of ZB-

CrZ, i.e., the hybridization between the Cr-d and Z-p states opens the band gap. The key role 

of the A element is two-fold. The first is to expand the lattice constant, thereby widening band 

gaps, and the second is to achieve structural stability through formation energy. Furthermore, 

the half-metallicity is robust under severe in-plane strain and at Z-term. Overall, considering 

all the features discussed so far, including good lattice mismatch with ZB semiconductors, we 

propose LiCrZ and NaCrZ (Z = As and Sb) as promising compounds for real-life applications 

to spintronics. 
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Chapter 4: High-performance permanent magnet using 

inverse Heusler Fe2MnSn: a first-principles study 

In this chapter, we discuss the structural stability and intrinsic magnetic properties of Fe2MnSn 

Heusler compounds. Regular and inverse cubic, inverse tetragonal, and hexagonal structural 

phases without and with 6.25% X (X = H, B, C, and N) interstitial doping, corresponding to 

Fe2MnSnX0.25 chemical formular, are investigated. Our results demonstrate the feasibility of 

stabilizing tetragonal Heusler compounds by light element interstitial doping. In particular, 

thermally stable inverse tetragonal Fe2MnSnH0.25 [𝜇!𝑀" = 1.50 T and Ku = 1.66 MJ·m-3] and 

Fe2MnSnN0.25 [𝜇!𝑀" = 1.36 T and Ku = 1.07 MJ·m-3] can be promising PMs to bridge the gap 

between high performance but costly PM Nd2FeB14 [𝜇!𝑀" ≈ 1.57 T, Ku ≈ 4.5 MJ·m-3, and 

(𝐵𝐻)J)=  ≈ 56 MGOe] and widely used Alnico [𝜇!𝑀"  ≈ 1.38 T, Ku ≈ 0.68 MJ·m-3, and 

(𝐵𝐻)J)=  ≈ 46.24 MGOe] and ferrite BaFe12O19 [𝜇!𝑀"  ≈ 0.48 T, Ku ≈ 0.33 MJ·m-3, and 

(𝐵𝐻)J)= ≈ 5.66 MGOe] materials.  

4. 1. Introduction  

Permanent magnets (PMs) are widely applied in a diversity of areas such as electric 

vehicles, wind turbines, drives, storage, and to name a few [13,14]. For high performance PMs, 

large energy product (𝐵𝐻)J)=  is demanded, where the intrinsic magnetic properties of 

saturation magnetization (𝜇!𝑀") and uniaxial magnetic anisotropy (Ku) are closely related to 

(𝐵𝐻)J)=. In addition, good thermal stability, and high Curie temperature (TC) are required to 

fulfill practical applications [16,17]. Since the high uniaxial Ku is associated with strong spin 

orbit-coupling (SOC) in 4d, 5f, or 4f orbitals whereas high 𝜇!𝑀" and high TC usually come 
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from 3d transition metal (TM) [15,84], the most effective approach to develop a PM is alloying 

of TM with 4d and 5d heavy metal (HM) or rare-earth (RE) element. Actually, Nd2FeB14 [𝜇!𝑀" 

≈ 1.57 T, Ku ≈ 4.5 MJ·m-3, and (𝐵𝐻)J)= ≈ 56 MGOe] [85] developed more than 40 years ago 

is still a champion PM. However, HM and RE are expensive with limited resources. 

Furthermore, there is a substantial performance gap between Nd2FeB14 and other widely used 

RE-free PMs such as Alnico [𝜇!𝑀" ≈ 1.38 T, Ku ≈ 0.68 MJ·m-3, and (𝐵𝐻)J)= ≈ 46.24 MGOe] 

and ferrite BaFe12O19 [𝜇!𝑀"  ≈ 0.48 T, Ku ≈ 0.33 MJ·m-3, and (𝐵𝐻)J)=  ≈ 5.66 MGOe]      

[17,18,21]. Therefore, finding new RE- or HM-free alternative PMs with comparable 

performances becomes a long-term goal and is actively on working [13,84].  

Heusler compounds X2YZ, which can be tailored by varying chemical elements 

[86,87], provide an expansive playground for designing new materials. Although most Heusler 

compounds are cubic, so improper to be PM materials due to a very weak Ku, some of Mn-

based, Ni-based, Co-based, and Fe-based compounds Mn2YZ, Ni2YZ, Co2YZ, and Fe2YZ 

(Y=TM and Z=sp element) are stable in tetragonal [88-91] or hexagonal structures [92-96]. 

Considerably large uniaxial Ku was also predicted in som tetragonal Heusler compounds such 

as Ni2CoGa (1.30 MJ·m-3) [91] and Fe2NiSn (1.09 MJ·m-3) [90] even without RE or HM 

elements. Therefore, Heusler compounds recently have emerged as promising candidates for 

RE-or HM-free PMs. Fe-based compounds Fe2YZ, thanks to their large predicted total 

magnetic moments per formula unit (around 4−6 𝜇$/fu) [88], has garnered attraction [92,97]. 

In experiment, Fe2YZ are usually synthesized in cubic [10,92,97] or hexagonal structures [93-

96]. Some of theoretical predicted Fe2YZ were confirmed in experiments to have large 

magnetic moments, such as cubic Fe2CoGe (5.40 𝜇$/fu) [97] , cubic Fe3Ga (6.14 𝜇$/fu)[10], 

and hexagonal Fe2MnGe (~5.00 𝜇$/fu) [94]. 
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Fe2MnSn was predicted to be stable in inverse tetragonal phase with desirable 

properties to be PM candidates such as large magnetic moment (7.34 𝜇$/fu) and high uniaxial 

Ku of 2.20 MJ·m-1 [88,89]. However, the results were not supported by experiments where 

Fe2MnSn was observed to be stable in a hexagonal structure rather than the tetragonal one with 

magnetic moment of 5.87 𝜇$/fu [94]. The Ku of the hexagonal phase has not been investigated 

yet despite the attractive magnetic moment of 5.87 𝜇$/fu in terms of a PM material. In this 

work, using a first-principles method, we investigate structural stability and intrinsic 

magnetism of Fe2MnSn and Fe2MnSnX0.25 (X is H, B, C, and N interstitial doping), referring 

to the interstitial doping of the light elements as one of the most potential approaches to 

tailoring material properties [98-102]. For example, light interstitial doping was theoretically 

predicted to improve the thermal stability of SmFe12 [98], or to switch biaxial 𝐾# of LaCo5 to 

uniaxial [99], or to induce tetragonal distortion of cubic phases [100-102].  

Our principal findings are that (i) Fe2MnSn is stable in the hexagonal, followed by the 

inverse tetragonal, the inverse cubic, and the regular cubic phase; (ii) large 𝜇!𝑀"  of 

1.28−1.59 T are found, regardless of structures; (iii) inverse tetragonal with an uniaxial 𝐾# of 

2.35 MJ·m-1 is more favorable to be a PM than hexagonal phase with a biaxial 𝐾# of −0.72 

MJ·m-1; (iv) the inverse tetragonal phase can be stabilized by interstitial doping of light 

elements.  
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4. 2. Computational detail 

The structural and electronic calculations are conducted by the density-functional 

theory (DFT) employed in the Vienna ab initio simulation package (VASP) [38]. The Perdew-

Burke-Ernzerhof (PBE) [34] generalized gradient approximation (GGA) is employed for the 

exchange-correlation interactions within the projector augmented-wave scheme[39]. Energy 

cutoff of 450 eV is used for the wave function expansion, and the k-mesh of 9 × 9 × 9 and 

9 × 9 × 7 is adopted for the Brillouin zone integration of the cubic, tetragonal, and hexagonal 

structure, respectively. The lattice parameter and ionic coordinates are relaxed until the force 

acting on ions < 1 × 10f* eV/Å.  

 𝐾# is calculated via the total energy method 𝐾# =
(hBf	hC)

E
 within self-consistent scheme, 

where V, 𝐸), and 𝐸5 are the volume, total energies with magnetization along the a (short axis), 

and c axes (long axis), respectively. Positive (negative) 𝐾#  indicates uniaxial (biaxial) 

magnetic anisotropy. A denser k-point mesh of 17 × 17 × 11 is used in the noncollinear 

calculations with a small Gaussian smearing parameter (0.05 eV). The convergence of 

calculations with respect to energy cut-off and k-point sampling are carefully checked to 

achieve well-converged values of 𝐾#.  The SOC term is included in a second-variational way 

employing scalar-relativistic calculations of the valence state [103]. To confirm the validity of  

𝐾# estimated by VASP, the 𝐾# result is double-checked by full-potential calculations with the 

same optimized structures obtained from VASP, employing the Fleur code [104].   
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4. 3. Crystal structures  

The structural phases of Heusler compounds are presented in Fig. 4. 1(a) and possible 

interstitial occupations in the inverse cubic and hexagonal structure are shown in Fig. 4. 1(b). 

Cubic Heusler compounds Fe2MnSn can be viewed as four interpenetrating fcc sublattices, 

composed by Fe, Mn, and Sn elements [74]. The cubic regular phase has L211 structure (the 

space group Fm3Nm, No. 225), in which Fe, Mn, and Sn occupy the Wyckoff position           

8c (1/4, 1/4, 1/4), 4b (1/2, 1/2, 1/2), and 4a (0, 0, 0). Inverse Heusler XA structure (the space 

group F4N3m, No. 216) can be visualized from L21 structure by switching position of one of Fe 

atoms with Mn or Sn atom. The non-equivalent Fe atoms in the inverse Heusler structure do 

not form a simple cubic lattice. In detail, Fe atoms are placed on 4b (1/2, 1/2, 1/2) and         

4d (3/4, 3/4, 3/4) site, while Mn and Sn atom occupy 4c (1/4, 1/4, 1/4) and 4a (0, 0, 0) Wyckoff 

position. 

Elongating or compressing along with [001] direction of regular (inverse) cubic 

structure, regular (inverse) tetragonal phase with the space group I4/mmm No. 139 (the space 

group I4Nm2, No. 119) is constructed [88,89] . The Fe atoms in the inverse tetragonal structures 

are also placed on (non-equivalent) equivalent sites in (inverlse) regular tetragonal structures 

like the cubic structures. Finally, in the hexagonal D019 structure (the space group P63/mmc, 

No. 194), the Fe and Mn atoms share the same 6h (1/6, 1/3, 1/4) sites with 2/3 and 1/3 

occupancy, and the Z atoms are placed at the 2c (1/3, 2/3, 1/4) sites [92-96]. We summarize 

crystal structures, space groups, and Wyckoff positions of Heusler compounds Fe2MnSn in 

table 4. 1.  
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There are four possible interstitial doping sites in inverse tetragonal structure, as shown 

in Fig. 4. 1(b). The grey and red octahedrons stand for 24f (0, 0, 1/4) and 24g (1/4, 1/4, 1/2) 

interstitial sites, while the light blue and light green tetrahedrons do 16e-I (1/4, 7/8, 7/8) and 

16e-II (7/8, 5/8, 7/8) interstitial sites [100]. In the case of the hexagonal structure, on the other 

hand, there are two possible interstitial doping sites. One is the octahedral site 6g (1/2, 1/2, 1/4), 

and the other is the tetrahedral site 4f (2/3, 1/3, 1/4) [105], marked by grey and light green lines. 

 

Table 4. 1: Crystal structures, space groups, and Wyckoff positions of Heusler compounds 

Fe2MnSn, in regular and inverse cubic, regular and inverse tetragonal, and hexagonal. 

  

Fe2MnSn Space 

group 

Fe Mn Sn 

Regular cubic Fm3Nm 8c (1/4, 1/4, 1/4) 4b (1/2, 1/2, 1/2) 4a (0, 0, 0) 

Inverse cubic F4N3m 4b (1/2, 1/2, 1/2) 

4d (3/4, 3/4, 3/4) 

4c (1/4, 1/4, 1/4) 4a (0, 0, 0) 

Regular tetragonal I4/mmm 4d (0, 1/2, 1/4) 2b (0, 0, 1/2) 2a (0, 0, 0) 

Inverse tetragonal I4Nm2 2b (0, 0, 1/2) 

4d (0, 1/2, 1/4) 

4d (0, 1/2, 1/4) 2a (0, 0, 0) 

Hexagonal P63/mmc 6h (1/6, 1/3, 1/4) 6h (1/6, 1/3, 1/4) 2c (1/3, 2/3, 1/4) 
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Figure. 4. 1: (a) The crystal structures of regular (L21), inverse (XA) cubic, and hexagonal 

(D019) Heusler compounds. Noteworthy, regular (inverse) tetragonal is similar to their parent 

cubic, except the lattice constant 𝑎 ≠ 𝑐  (b) The possible interstitial sites in inverse and 

hexagonal Heusler structures. Pink, blue, and grey spheres stand for Fe, Mn, and Sn atoms, 

respectively. Pink and yellow differentiate FeA and FeB in inverse structure. 
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4. 4. Results and discussions 

4. 4. 1. Fe2MnSn 

Firstly, from total energy calculation, we identify the most stable phases among regular 

(inverse) cubic, inverse tetragonal, and hexagonal, as shows in Fig. 4. 2(a). The most 

energetically stable structure is the hexagonal phase, followed by the inverse tetragonal, the 

inverse cubic, and the regular cubic. For the hexagonal phase, being the most stable phase is in 

an agreement with experiments [94]. Fig. 4. 2(b) presents the energy difference between cubic 

and tetragonal distortion Δ𝐸 = 𝐸(5 )⁄ ) −		𝐸(5 )⁄ 8,) as a function of tetragonal distortion ratio 

(c/a) for regular (inverse) Fe2MnSn. According to Fig. 4. 2(b), the Δ𝐸 > 0  indicates the 

preference of regular cubic to tetragonal distortion. In contrast, the inverse tetragonal phase is 

more stable than inverse cubic by 0.07 eV/fu.   

Equilibrium lattice constant, relative energy ∆E per formula unit (fu) in the reference 

of the hexagonal phase, total magnetic moment per fu, and saturation magnetization 𝜇!𝑀" are 

summarized in Table 4. 2. Large total magnetic moments are predicted regardless of the 

structure. The magnetic moments are 5.98, 7.69, 7.39, and 6.73 𝜇$  for the regular cubic, 

inverse cubic, inverse tetragonal, and hexagonal structures, respectively, whose corresponding 

to the saturation magnetization 𝜇!𝑀"  of 1.28 T, 1.57 T, 1.52, and 1.39 T. Reminding the 

𝜇!𝑀" of some typical PMs, such as Alnico 5 (1.38 T), SmCo5 (1.08 T), Nd2Fe14B (1.57 T), 

and Sm2Fe17N3 [14,18], the 𝜇!𝑀" of Fe2MnSn are large enough to be high performance PMs. 

The large total magnetic moment mainly comes from Fe and Mn, while Sn has a negatively 

induced magnetic moment. The inverse cubic structure (a = 6.11 Å, mt = 7.69 𝜇$ fu⁄ ) is 
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noteworthy to have a larger magnetic moment compared to the regular one (a = 6.02 Å, mt = 

5.98 𝜇$ fu⁄ ), even though their lattice constants are not much different. The optimized lattice 

constant of the hexagonal phase (a = 5.48 Å, c = 4.35 Å) agrees well with the previous 

experiments (a = 5.50 Å, c = 4.39 Å) but the total magnetic moment (6.73 𝜇$ fu⁄ ) is somewhat 

larger than an experiment value (5.87 𝜇$ fu⁄ )[94].  

Strong magnetic anisotropy is one of key physical properties for a high performance 

PM. The inverse tetragonal Fe2MnSn show a strong magnetic anisotropy. Its uniaxial magnetic 

anisotropy parameter Ku is as large as 2.35 MJ·m-3, while the most stable hexagonal phase 

shows a biaxial Ku of –0.72 MJ·m-3. In other word, the hexagonal structure is less favorable for 

a PM whereas the inverse tetragonal phase is very attractive due the large 𝜇!𝑀"  and Ku.  

Interstitial doping with light elements may be helpful in achieving a uniaxial Ku in the 

hexagonal phase or in enhancing thermal stability of the tetragonal phase [98-102]. In this 

subsection, the effect of the light element doping on the magnetic properties of Fe2MnSn is 

discussed. H, B, C, and N elements are studied with 6.25% concentration, corresponding to 

Fe2MnSnX0.25 chemical formula.   
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Fig. 4. 2: (a) Total energy versus volumes for regular cubic, inverse cubic, inverse tetragonal, 

and hexagonal phases. (b) The 𝛥𝐸 = 𝐸(5 )⁄ ) − 𝐸(5 )⁄ 8,) as a function of tetragonal distortion 

ratio (c/a) of regular (inverse) Fe2MnSn.   
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Table 4. 2: Calculated lattice parameters (in Å), total magnetic moment per formula unit, atom-

resolved magnetic moment (in 𝜇$), relative energy ∆E with hexagonal phase (in eV/fu), and 

magnetic anisotropy 𝐾# (MJ∙m-3) of Fe2MnSn for regular cubic (Reg. cub), inverse cubic (Inv. 

cub), inverse tetragonal (Inv. tet), and hexagonal (Hex) structural phase.* 

  

Fe2MnSn Lattice parameters 𝑚F 𝑚.L 𝑚O? 𝑚"? ∆E 𝜇!𝑀" 𝐾# 

Reg. cub a = 6.02 5.98 1.78 2.55 –0.17 0.26 1.28 – 

Inv. cub a = 6.11 7.69 

 

(FeA) 

2.25 

(FeB) 

2.54 

3.03 –0.13 0.19 1.57 – 

Inv. tet a = 5.64, c =7.08, 

c/a = 1.25 

(a = 5.61, c = 7.14a) 

7.39 

 

(FeA) 

2.19 

(FeB) 

2.45 

2.79 –0.17 0.12 1.52 2.35 

2.20a 

Hex a = 5.48, c = 4.35, 

c/a = 0.79 

(a = 5.50, c = 

4.39b) 

6.73 

5.87b 

 

2.17 2.62 –0.16 0 1.39 –0.72 

* a and b mark calculation [88] and experiment [85] results from literature       
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4. 4. 2. Hexagonal Fe2MnSnX0.25 

Table 4. 3: Calculated lattice parameters (in Å), the relative energy difference (in eV/fu) 

between interstitial doping on 4f site and 6g site (in eV/fu), total magnetic moment per formula 

unit (in 𝜇$), and magnetic anisotropy Ku (in MJ∙m-3) for hexagonal Fe2MnSnX0.25 with (X = 

H, B, C, and N).  

 

Table 4. 3 lists the calculated lattice parameters, relative energy difference between 

interstitial doping on 2d site and 6g site, total magnetic moment mt, and magnetic anisotropy 

Ku after interstitial doping in cases of the hexagonal phase. The B, C, and N prefer the 

octahedral 6g site, while only H does the tetrahedral 2d site. The c/a ratio of Fe2MnSnX0.25 are 

0.81, 0.84, 0.80, and 0.81 for X = H, B, C, and N, which do not significantly deviate from the 

c/a = 0.80 without the doping (Table 4. 2). The interstitial doping enhances total magnetic 

moment mt from 6.73 𝜇$ to 7.18, 7.24, 6.77 and 7.16 𝜇$ for X = H, B, C, and N (Table 4. 2). 

Ku remains negative −0.97, −0.68, −0.81, and −1.05 MJ ∙m-3 for H, B, C, N. Positive 

Fe2MnSnX0.25 E(4f) – E(6g) Lattice parameters 𝑚F 𝐾# 

X = H –0.17 a = 5.47, c = 4.43, c/a = 0.81 7.18 –0.97 

X = B 0.27 a = 5.46, c = 4.60, c/a = 0.84 7.24 –0.68 

X = C 0.13 a = 5.52, c = 4.45, c/a = 0.80 6.77 –0.81 

X = N 0.09 a = 5.54, c = 4.48, c/a = 0.81 7.16 –1.05 
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uniaxial Ku is a key factor to being a PM candidate. Thus, the possibility of the hexagonal phase 

can be ruled out for a PM candidate. 

4. 4. 3. Inverse tetragonal Fe2MnSnX0.25 

For the inverse tetragonal phase, all H, B, C, and N prefers in the octahedral site 24g 

(Table 4. 4.). The calculated lattice parameter, total magnetic moment, and Ku of the inverse 

tetragonal Fe2MnX0.25 are listed in table 4. 5. The relative energy between tetragonal and cubic 

Δ𝐸 = 𝐸(5 )⁄ ) − 𝐸(5 )⁄ 8,)  as a function of tetragonal distortion ratio (𝑐 𝑎⁄ ) of Fe2MnSn for 

different volumes with and without interstitials are presented in Fig. 4. 1(a). The tetragonal 

Fe2MnSn possesses a tetragonal instability [106] with c/a = 1.25 and a local minimum at c/a = 

0.90. Noteworthy, the local minimum has not been observed after introducing interstitial 

doping.	Δ𝐸	can be proportional to the martensite phase transition temperature 𝑘$𝑇O [107]. X 

obviously improves the stability of the tetragonal phase compared to the cubic one; with X = 

B doing the best while X = H does the worth. Interstitial doping induces a larger 𝑐 𝑎⁄  ratio in 

Fe2MnSnX0.25 up to 1.33, 1.36, 1.32, and 1.39 for X = H, B, C, and N compared to 1.25 in 

Fe2MnSn. The total magnetic moments of Fe2MnSnX0.25 are 7.33, 6.90, 6.75, and 6.69 𝜇$ for 

X = H, B, C, and N. Clearly, the total magnetic moment of 7.39 𝜇$ of Fe2MnSn (Table 4. 1) 

decreases significantly after doping, except for X = H, even though the 𝑐 𝑎⁄  ratio of 

Fe2MnSnH0.25 is not much different from other doping.   
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Table 4. 4: The relative energy difference (in eV/fu) between interstitial doping on tetrahedral 

site16-eI, 16e-II, and octahedral 24f site with octahedral 24g site in tetragonal phase of 

Fe2MnSnX0.25 with (X = H, B, C, and N).   

Fe2MnSnX0.25 E(16e-I) – E(24g) E(16e-II) – E(24g) E(16e-II) – E(24g) 

X = H 0.006 0.09 0.08 

X = B 0.17 0.16 0.33 

X = C 0.13 0.21 0.53 

X = N 0.11 0.15 0.51 

 

 

 

Fig. 4. 3: The 𝛥𝐸 = 𝐸(5 )⁄ ) −		𝐸(5 )⁄ 8,) as a function of tetragonal distortion ratio 𝑐 𝑎⁄  of 

Fe2MnSn for different volumes and without X and with 6.25% concentration of X (X = H, B, 

C, and N). Herein, the reference energy is the energy of the compound in inverse cubic 

structure.  
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Fig. 4. 4: (a) Inverse tetragonal Heusler Fe2MnSnX0.25 with interstitial doping X (X = H, C, 

and N) at the most stable octahedral 24g site. Fei, Feii, Feiii, Feiv, Fev and Mni, Mnii denote FeA, 

FeB, and Mn at different sites. Changes of atom-resolved magnetic moment ms for (b) FeA, (c) 

FeB, and (d) Mn atoms after introducing 6.25% concentration of X (X = H, B, C, and N). 

Herein, the dash lines mark the value without X.  
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Table 4. 5: The associated bond length (in Å) of X with Feii, Feiv, Mniv, and Sn atom, which 

forms the tetrahedron surrounding X.   

Bond length H B C N 

X - Feii 2.00 2.00 1.94 1.94 

X - Feiv 3.59 3.55 3.48 3.49 

X - Mniv 1.95 2.02 1.92 1.89 

X - Sn 3.13 3.16 3.18 3.17 

 

The bond lengths of Fe-X and Mn-X are nonidentical, resulting in the difference in 

charge transfer associated with those bonds. Thereby the site positions are denoted based on 

the associated bond lengths of each Fe (Mn) atom with X. In detail, Fei and Feii correspond to 

FeA. Feiii, Feiv, and Fev are analogous to FeB. Mni, and Mnii accord with Mn. Magenta, cyan, 

yellow, red, green, blue, and orange balls denote Fei, Feii, Feiii, Feiv, Mni, and Mnii site as in 

Fig. 4. 4(a). The changes in atom-resolved magnetic moment ms for FeA, FeB, and Mn atoms 

are presented in Fig. 4. 4(b), Fig. 4. 4(c), and Fig. 4. 4(d), respectively. Herein, Feii, Feiv, Mnii, 

and Sn form the tetrahedron surrounding atom X, those bond lengths are listed in table 4.5. The 

bond lengths of Feii, Feiv, and Mnii with X when X = H and B are larger than when X = C and 

N, especially for Feiv. With X = B, C, and N, the magnetic moment of FeB (Mn) reduces 

significantly from 2.45 𝜇$ (2.78 𝜇$) to 1.83, 1.71, and 1.58 𝜇$ (2.48, 2.17, and 2.14 𝜇$) at 

Feiv (Mnii) site. The magnetic moments are less altered for Fei, Feii, Feiii, Feiv, and Mni other 

atomic sites. In cases of X = H, the influence of interstitial doping is relatively insignificantly 

as the magnetic moment of each site before and after interstitial doping are comparable.  
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 Ku remains uniaxial but sharply decreases from 2.35 MJm-3 to 1.66, 1.66, 1.17, and 

1.07 MJ∙m-3 for H, B, C, and N interstitial doping, respectively. Two DFT methods VASP and 

Fleur, give a good accordance on Ku [Fig. 4. 5(a)]. Noteworthy, the Ku value is very close 

between H and B (C and N). Furthermore, H and B give larger Ku values than C and N. To 

elucidate the physical properties of Ku, we further estimate the atom-resolved Ku via the SOC 

energy difference of a- and c-axis magnetization, where 𝐾# ≈ 1/2∆𝐸":; . Because the 50% of 

the SOC energy translates into the crystal-field energy and the formation of the unquenched 

orbital moment [108], the expectation value is twice the actual value of the total energy 

correction to the second order in SOC [109,110]. Here, 𝐸":;  is expressed as             

𝐸":; =	 〈¶
ℏ!

*J!5!
· ¶,

I
· [𝑑𝑉(𝑟)]𝐿� ∙ 𝑆Ù〉, where 𝑉(𝑟) is the spherical part of the effective potential 

within the PAW sphere, and 𝐿� and 𝑆Ù are orbitals and spin operators, respectively.  
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Table 4. 6: Calculated lattice parameters (in Å), total magnetic moment per formula unit (in 

𝜇$), magnetic anisotropy Ku (in MJm-3), saturation magnetization 𝜇!𝑀"  (in T), theoretical 

maximum energy product (BH)max (in MGOe), anisotropic field 𝜇!𝐻) (in kOe), and magnetic 

hardness parameter 𝜅 for inverse tetragonal Fe2MnSnX0.25 for (X = H, B, C, and N). 

  

Fe2MnSnX0.25  Lattice constant  𝑚F 𝐾# 𝜇!𝑀" (BH)max 𝜇!𝐻) 𝜅 

X = H a = 5.54, c = 7.42, 

𝑐 𝑎⁄  = 1.34 

7.33 1.66 1.50 56 28 0.93 

X = B a = 5.55, c = 7.51, 

𝑐 𝑎⁄  = 1.35 

6.90 1.66 1.39 48 30 1.08 

X = C a = 5.57, c = 7.40, 

𝑐 𝑎⁄  = 1.33 

6.75 1.17 1.35 45 22 0.80 

X = N a = 5.50, c =7.60, 

𝑐 𝑎⁄  = 1.38 

6.69 1.07 1.36 46 20 0.73 
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Fig. 4. 5: (a) Comparison between 𝐾#  calculated by VASP and Fleur. Changes of atom-

resolved magnetic anisotropy 𝐾# for (b) FeA, (c) FeB, and (d) Mn atoms after introducing 

6.25% concentration of X (X = H, B, C, and N). The dash lines mark the values without X.  
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Fig. 4. 6: (a) Orbital-resolved PDOS of FeB at Feiv site after introducing 6.25% concentration 

of X with X = H, B, C, and N. Black arrow highlights the downward shift toward to the energy 

region below Fermi level EF of 𝑑9! orbital states. (b) The changes of d-orbitals resolved of 

∆𝐸":;  with 𝐾# ≈ 1/2∆𝐸":; .  
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Fig. 4. 5. presents the changes of atom-resolved Ku for (b) FeA, (c) FeB, and (d) Mn 

atoms of Fe2MnSn along with X (X = H, B, C, and N) doping. Ku tends to reduce for all sites 

after doping. The substantial decreases of Ku in cases of C and N interstitial doping can be 

attributed to the reverse sign of Ku of FeB atoms from positive (0.17 meV) to negative (around 

−0.29 meV) at Feiv sites [see Fig. 4. 5(c)]. We employ the framework of perturbation theory 

[111] to elucidate the origin of strong reduction of Ku for FeB atoms at Fe(ii) site. Herein, 𝐾# 

can be expressed by the SOC interaction between occupied and unoccupied bands:   

																																	𝐾# ≈ 𝜉*~(2𝛿��$ − 1)
��𝑜��𝐿�9�𝑢�

$�
*
− �𝑜��𝐿�=�𝑢�

$�
*
�

𝐸#�
$ − 𝐸p�p,#

																									(4.1) 

where 𝜉  denotes the strength of spin-orbit coupling, 𝐿�= (𝐿�9 ) are the angular momentum 

operators,  𝐸p� (𝐸#�
$) are the energy levels of occupied (unoccupied) states with spin 𝜎 (𝜎<). 

Fig. 4. 6(a) presents the change of orbital resolved PDOS of FeB at Feiv site after doping 

X. When X = B, C, and N, due to 3d − 2p hybridization, a significantly broader density of 

states is observed. After doping X, while the majority spin state (↑) remains fully occupied, the 

unoccupied states in the minority spin (↓) shift toward the energy region below Fermi level EF 

The changes of d-orbital resolved Ku of FeB after doping at Feiv site are shown in Fig. 4. 6(b). 

Without X, the 𝐾# > 0 primarily arises from the �𝑥𝑧	(↑)�𝐿�=�	𝑧*	(↓)�	matrix. With X, this 

positive contribution is reduced along with the downward shift to EF of 𝑑9! states in minority 

spin [see Fig. 4. 6(a)], which enhances the 𝐾# < 0 of ⟨𝑥𝑧	(↓)|𝐿=|	𝑧*(↓)⟩.  When X = H,	

𝐾# > 0  from �𝑥𝑧	(↑)�𝐿�=�	𝑧*	(↓)�	 is reduced. When X = B, C, and N, the 𝐾# < 0 from 

⟨𝑥𝑧	(↓)|𝐿=|	𝑧*(↓)⟩ becomes dominant. The influences from other d-orbital pairs on Ku seem 

to be insignificant. Meanwhile, the magnetic moment and atom-resolved Ku of atoms, which 
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stays far from interstitial doping X (Fei, Feiii, Fev, and Mni), are only marginally varied even 

when 𝑐/𝑎  is seriously induced after doping. Thus, the hybridization of X with its local 

surrounding atoms takes more role in the total magnetic moment as well as Ku.  

 As mt and uniaxial 𝐾# are known, we next determine the saturation magnetization 

𝜇!𝑀" , theoretical energy product (𝐵𝐻)J)= , anisotropic field, and hard parameter 𝜅 . The 

energy density product maximum (𝐵𝐻)J)= is figure of merit of permanent magnet material 

which indicates how strong magnetic flux a material generates per unit volume. The energy 

product (𝐵𝐻) = 𝜇!𝐷(1 − 𝐷)𝑀"
*, where 𝐷 is the demagnetizing factor which is larger than 0 

and smaller than 1, i.e., 0 < 𝐷 < 1, depending on the shape of the paramagnet magnet [17,18]. 

When 𝐷 = ,
*
, (𝐵𝐻) reaches the maximum (𝐵𝐻)J)= = ¶,

K
· 𝜇!𝑀"

*. The anisotropic field is 

theoretically estimated as 𝜇!𝐻) (= 2𝐾# 𝑀"⁄ ), where 𝐻) is the field needed to saturate the 

magnetization in the hard-axis direction. The hard parameter 𝜅 [17,18] is expressed as:  

𝜅 = ¯ N"
x)O#

!°
4
!
                           (4.2) 

The calculated 𝜇!𝑀", (𝐵𝐻)J)=, 𝜇!𝐻), and 𝜅 of Fe2MnSnX0.25 for (X = H, B, C, and 

N) are listed in table 4. 6. Thanks to the largest total magnetic moment, Fe2MnSnH0.25 shows 

the largest 𝜇!𝑀" = 1.50 T, generating a large (𝐵𝐻)J)= of 56 (MGOe). For other cases, the 

𝜇!𝑀" values of Fe2MnSnB0.25, Fe2MnSnC0.25, and Fe2MnSnN0.25 are 1.39, 1.35, and 1.36 T, 

giving (𝐵𝐻)J)= of 48, 45, and 46 (MGOe). Noteworthy, the (𝐵𝐻)J)= of present compounds 

are quite comparable with the state-of-art PM Nd2Fe14B [(𝐵𝐻)J)=  = 56 (MGOe)] [85]. 

Fe2MnSnB0.25 exhibits the highest 𝜇!𝐻)  of 30 kOe and 𝜅  up to 1.03. For other cases, 

Fe2MnSnH0.25, Fe2MnSnC0.25, and Fe2MnSnN0.25 show 𝜇!𝐻)  of 28, 22, and 20 kOe, 
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corresponding to 𝜅 of 0.93, 0.88, and 0.73. Thus, Fe2MnSnX0.25 (0.5 < 	𝜅 < 1) are semihard 

magnetic materials, except X = B ( 𝜅 > 1 ) are hard magnetic materials. Meanwhile, 

Fe2MnSnH0.25 and Fe2MnSnB0.25 have better intrinsic magnetism than Fe2MnSnC0.25 and 

Fe2MnSnN0.25, indicating by larger 𝜇!𝑀", (𝐵𝐻)J)=, 𝜇!𝐻), and 𝜅.  

 As in section 4. 4. 1, the inverse tetragonal structure is unstable. Thus, it is crucial to 

explore the formation energy of inverse tetragonal Fe2MnSn, upon the addition of 6.25% X-

dopants concentration. Here, the formation energy of Fe2MnSnX0.25 against the decomposition 

into end of member compounds [112,113] is calculated using the following equation: 

𝐻M = 𝐸.L!O?"?a).!* − (2𝐸.L + 𝐸O?"? + 0.25𝐸a)              (4.3) 

where E/�!2A�A�).!* , E/� , E2A�A , and E�  are the total energies of Fe2MnSnX0.25, 𝛼 -Fe, 

hexagonal-MnSn (space group P6/mmm) [114], and X atoms at their ground-sate phases (H2 

molecule, 𝛼 -rhombohedral boron, graphite, and N2 molecule). Negative (positive) 𝐻M 

indicates the stable (unstable) structure against the composition into 𝛼-Fe, MnSn, and X. The 

formation energy is more conservative against decomposition into elements of Fe, Mn, Sn, and 

X. Furthermore, in practical, Fe-Mn-Sn tends to decompose into 𝛼-Fe and binary MnSn rather 

than elementary phases [115]. The formation energy results are presented in Fig. 4. 7. 

The 𝐻M value of inverse tetragonal Fe2MnSn is 9.61 kJ mol-1, indicating that inverse 

tetragonal Fe2MnSn is unstable against 𝛼-Fe and MnSn decomposition. 𝐻M > 0 agrees well 

with experiments of the hexagonal structure [94]. In contrast, inverse tetragonal Fe2MnSnH0.25 

and Fe2MnSnN0.25 are thermally stable as the 𝐻M  magnitudes become negative −8.55 and 

−35.19 kJ·mol-1. The hexagonal phase is more energetic stable than the inverse tetragonal 
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phase, thus, we also calculated 𝐻M of hexagonal Fe2MnSnH0.25 and Fe2MnSnN0.25. The results 

show that the 𝐻M  of hexagonal Fe2MnSnH0.25 and Fe2MnSnN0.25 are −11.93 and −30.16    

kJ·mol-1, respectively. Hence, the tetragonal Fe2MnSnN0.25 is even more thermaly stable by 

5.03 kJ·mol-1 (corresponding to 0.05 eV/atom) than hexagonal Fe2MnSnN0.25, which shows 

uniaxial 𝐾# and cannot be PM candidates (Table 4. 3).  
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Fig. 4. 7: Enthalpy of formation energy of Fe2MnSn inverse tetragonal structure without X and 

with 6.25 % concentration of X (X = H, B, C, and N). Herein, the formation energy of 

hexagonal structure with 6.25 % concentration of X (X = H and N) is also presented and 

denoted by black to distinguish with tetragonal phase marked by blue.  
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4. 5. Summary 

We have reported a first-principles study on structural stability and intrinsic magnetic 

properties of Fe2MnSn Heusler compounds, using VASP and FLAWP complementarily. The 

most stable phase is hexagonal, followed by inverse tetragonal, inverse cubic, and regular cubic 

structure. The present compounds are predicted to have 𝜇!𝑀" as large as 1.28 T −1.59 T for 

all structure phases. Thanks to uniaxial Ku of 2.35 MJ·m-3, the inverse tetragonal phase is more 

desirable to be RE-free PM compared to the hexagonal structure phases with uniaxial Ku of 

− 0.72 MJ ·m-3. We further demonstrate the feasibility of stabilizing tetragonal phase 

considering light element interstitial doping X (X = H, B, C, and N) with 6.25% concentration. 

  In particular, 6.25% concentration of H and N can improve the thermal stability of the 

inverse tetragonal phase, indicated by negative formation energies 𝐻M  of -8.55 and -35.19 

kJ·mol-1. H has good intrinsic magnetic properties, i.e., a uniaxial 𝐾#  of 1.66 MJ ∙m-3, a 

theoretical energy product (BH)max up to 56 MGOe, a 𝜇!𝐾# of 28 kOe, and 𝜅 of 0.93 while 

N [𝐾# = 1.07 MJ∙m-3, (BH)max = 46 MGOe, 𝜇!𝐾# = 22 kOe, and 𝜅 = 0.73] has a good thermal 

stability since being even more thermal stable by 5.03 kJ∙mol-1 than hexagonal phase.  
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Chapter 5: Prediction of large anomalous Hall conductivity in a 

compensated ferrimagnet quaternary Heusler compound 

TiZrMnAl  

In this chapter, the anomalous Hall effect in a compensated ferrimagnet quaternary Heusler 

compound TiZrMnAl is investigated. To do so the anomalous Hall conductivity is calculated 

via Kubo formular, and the results are analyzed based on the total Berry curvature over whole 

Brillouin zone.  

5. 1. Introduction 

When a non-magnetic material is put in an external magnetic field, which is 

perpendicular to an applied electric current, the current carriers are forced to move along the 

curve path, giving rise to a transverse electric field [19]. This effect is called as the ordinary 

Hall effect. When the sample is a ferromagnet, the effect is referred to as anomalous Hall effect 

(AHE).  

The anomalous Hall conductivity (AHC) can be measured via the total Hall resistivity 

[116]. The total Hall resistivity 𝜌=> is expressed as: 

  𝜌>= =	𝑅!𝜇!𝐻 +	𝜌>=nkh       (5.1) 

where 𝑅! is the Hall coefficient, 𝜇! is the magnetic permeability of free space, and H is the 

external magnetic field. While the first term is referred as the ordinary Hall effect contribution, 

the second term 𝜌>=nkh is the total anomalous Hall component. 𝜌>=nkh is commonly believed 

to scale with the spontaneous magnetization of materials [19]. Therefore, it has been long 
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regarded that due to spin-orbit interaction SOI, the ferromagnetic materials with non-zero 

magnetization generate an addition transverse voltage by anomalous velocity of carriers in 

AHE [117]. The origin of AHE is attributed to extrinsic and intrinsic factor. The extrinsic 

contributions come from scattering and side sump, while intrinsic contributions can be 

evaluated via the electronic band structures [19,118,119]. Hence, the AHE is believed to be 

zero in antiferromagnetic (AFM) or compensated ferrimagnetic (FiM) materials owing to the 

vanishing of net magnetic moment.  

Considering only the intrinsic contribution, AHC can be calculated from linear 

response theory [120] (or from Kubo formula [121]) via the Berry curvature Ω?,=>
9 (𝒌). The 

Berry curvature is defined int terms of the Berry connection Ω?,=>
9 (𝒌) = 	∇𝒌 × 𝑨?(𝑘), where 

𝑨?(𝑘) = −𝑖⟨𝑢?𝒌|∇𝒌𝑢?𝒌⟩. AHC is proportional to the Berry curvature integration over whole 

Brillouin zone (BZ): 

																																																													Ω?,=>9 =	~𝑓[𝜀?(𝒌)]Ω?,=>
9

?

																																															(5.2) 

Thus, one can tailor AHC via critically altering the Berry curvature distribution, regardless of 

the magnetization [4,122]. A crucial feature of Berry curvature is that it is odd under a time-

reversal (TR) operator 𝑇�  [20,22,123,124]. Hence, a broken time-reversal system is essential 

to have a nonzero AHC. In most collinear AFM, although 𝑇�  is broken, the AHC is forced to 

be zero, due to the joint of 𝑇�𝑂�  symmetry operator, where 𝑂�  is a space group operator.  

While most studies on AHE have been done on FMs, AHE in non collinear AFMs 

have attracted the community[124]. Theoretical studies predicted non-negligible AHE in some 

non-collinear AFMs, such as Mn3Ir (200 Ωf,cmf,) [22] , Mn3Pt (98 Ωf,cmf,), Mn3Sn (120 
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Ωf,cmf, ) [125,126], and Mn3Ge (330 Ωf,cmf, ) [125-127] despite the absence of net 

magnetization, in which the influences of symmetry constrained by magnetization on Berry 

curvature was revealed. These predictions were confirmed in experiments [128-130] afterward. 

Recently, studies on AHE in magnetic materials without net magnetic moment have been 

extended to compensated FiMs. Nonzero AHC has been theoretical found in inverse Heusler 

compounds Ti2MnAl (300 Ωf,cmf,) [23] and Mn3Al (−320 Ωf,cmf,) [131].  

Heusler compound is considered as a good platform for tailoring AHC via Berry 

curvature [4,122,132], owing to their feasible properties tuned by varying chemical elements 

[7,8]. Therefore, in this work, we investigate the AHE in 𝛼-phase, 𝛽-phase and 𝛾-phase of 

ferrimagnet quaternary Heusler compounds TiZrMnAl. Herein, all phases have (nearly) 

compensated moment. Despite of the similar equilibrium lattice constant, as well as total 

magnetic moments, the AHC is totally different. Noteworthy, the ⍺-phase shows a AHC as 

large as 1470 W-1cm-1 while β- and 𝛾-phase only do a moderate AHC of 200 and 100 W-1cm-1. 

The large AHC in ⍺-phase is explained via the total Berry curvature over the whole BZ.   
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5. 2. Crystal structures 

Quaternary Heusler compound TiZrMnAl constitutes of face-centered cubic lattice with 

four occupied Wyckoff positions 4a (0, 0, 0), 4c (1/4, 1/4, 1/4), 4b (1/2, 1/2, 1/2), and 4d (3/4, 

3/4, 3/4). Detail of atomic occupation in three possible phases are listed in table 5.1 [133]. For 

all phases, Al is fixed at 4d position. In α-phase, Ti, Zr, and Mn atoms occupy 4a, 4c, and 4b 

Wyckoff positions. In 𝛽-phase, the position of Zr and Ti atoms are interchanged, while in 𝛾-

phase, the position of Zr is switched with Mn. Three possible structural phases (α, β, and 𝛾) 

and their relationship are illustrated in Fig 5. 1. These phases are distinguished by their 

octahedral environment.    

Without magnetization, crystal structure of quaternary Heusler compound has a space 

group of F4N3m (No. 216) [76], comprising of mirror planes 𝑀±,,! , 𝑀,±,! , and 𝑀!±,, , 

together with the three two-fold rotations C2,x, C2,y, and C2,z. In our work, we choose the 

magnetization along with z-axis. The choice of magnetization direction alerts the symmetry 

from cubic to tetragonal described by the magnetic space group I4N𝑚<2< [134], where the prime 

denotes TR [105,135-138]. The Mn local magnetic moment is antialigned with Ti and Zr local 

magnetic moments. Magnetic unit cell for 𝛼-phase, 𝛽-phase, and 𝛾-phase in the presence of 

magnetic moments as presented in Fig 5. 2. 
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Fig. 5. 1: Crystal structures of quaternary Heusler compounds TiZrMnAl in conventional cubic 

unit cell with space group 𝐹4N3𝑚 (No. 216) and their octahedral environments for 𝛼-phase, 

𝛽-phase, and 𝛾-phase. Blue, green, magenta, and grey balls denote Ti, Zr, Mn, and Al atoms.   

 

Table 5.2: The possible phases of quaternary-Heusler compound TiZrMnAl. The positions (4a, 

4b, and 4c) are denoted in terms of the Wyckoff positions.  

Structural phase Ti Zr Mn Al 

𝛼-phase 4a 4c 4b 4d 

𝛽-phase 4c 4a 4b 4d 

𝛾-phase 4a 4b 4c 4d 
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Fig. 5. 2: Magnetic unit cell for 𝛼-phase, 𝛽-phase, and 𝛾-phase in the presence of magnetic 

moments, denoted by arrows, along the z axis, whose magnetic space group is I4N𝑚<2<. 

5. 3. Computational methodology  

The electronic band structures are calculated by density-functional theory (DFT) using 

the Vienna ab initio simulation package (VASP) [38]. The exchange-correlation interactions 

have been treated with the Perdew, Burke, and Ernzerhof (PBE) generalized gradient 

approximation (GGA) [35]. We use an energy cutoff of 450 eV for the plane-wave basis 

expansion and a k-mesh of 21 × 21 × 21 within Monkhorst-Pack scheme for self-consistent 

calculation.   

We obtain AHC via WANNIERBERRY[139] code with an interpolation-grid of 

500 × 500 × 500 . The convergence of AHC is carefully checked with respect to the 

interpolation-grid. Herein, AHC is calculated using Kubo formula [19,20], as follows: 
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																						Ω?,=>
9 (𝒌) = − ~

2𝐼𝑚 ��𝑢?𝒌�𝜕U%𝐻�(𝒌)�𝑢?$𝒌� �𝑢?$𝒌�𝜕U&𝐻�(𝒌)�𝑢?𝒌��

[𝜀?(𝒌) − 𝜀?$(𝒌)]*?$S?

														(5.3) 

and 

																																																𝜎=> = −
𝑒*

ℏ ~�
𝑑Q𝑘
(2𝜋)Q$R?

𝑓[𝜀?(𝒌)]Ω?,=>
9 (𝒌)																															(5.4) 

where Ω?,=>
9  is the z-component of Berry curvature, |𝑢?𝒌⟩ represents the periodic part of the 

n-th Bloch state, 𝜀?(𝒌) is the eigenvalue for the nth eigenstates of |𝑢?𝒌⟩ at the k point, and 

𝛻𝒌𝐻�(𝒌) ℏ⁄  is the velocity operator.  

The Wannier functions is extracted from DFT calculation via the WANNIER90 

package [140], with an initial guess for the orbitals as the 3p and 3d orbitals of Ti Zr, and Al; 

and 3s and 3p orbitals of Al. The reliability of Wannier function is verified by comparing the 

band structure from DFT and WANNIER90. The full-potential linearized augmented plane 

wave (FLAPW) method as implemented in FLEUR [104] was employed to confirm the validity 

of AHC calculated by VASP. 

5. 4. Results and discussions 

5. 4. 1. Magnetic and electronic properties  

The calculated lattice constant of TiZrMnAl for each structural phase is shown in table 5. 2. 

According to table 5. 2, the 𝛼-phase is the most stable phase, established by a relativity energy 

difference of 0.34 and 0.03 eV/fu compared to 𝛽-phase and 𝛾-phase. The equilibrium lattice 

constants are 6.41, 6.48, and 6.39 Å for 𝛼-, 𝛽-, and 𝛾-phase, respectively. Meanwhile, the 
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atom-resolved magnetic moments of Ti (1.58, 1.62, and 0.29 𝜇$) is larger than those of Zr 

(0.80, 1.15, and 0.07 𝜇$). The Mn local magnetic moment (−2.34, −2.74, and −0.59 𝜇$) is 

antialigned with Ti and Zr local magnetic moments. The total magnetic moments are 0.00, 

0.00, and 0.10 𝜇$, indicating the vanishing net magnetic moment in 𝛼- and 𝛽-phase. The zero 

magnetic moment of TiZrMnAl satisfies the Slater-Pauling rule in quaternary Heusler materials 

[141] 𝑚F = 𝑍E − 18, where 𝑍E is the total valence electron number per formula unit.  

 

Table 5.1: Calculated lattice parameters 𝑎! (in Å), atom-resolved magnetic moment, total 

magnetic moment per formula unit (in 𝜇$), and the relativity energy difference (in eV/fu) with 

𝛼-phase.     

 

The electronic band structure of TiZrMnAl is shown in Fig. 5. 2. For 𝛼-phase, there 

is a band gap of 0.85 eV in minority spin. In majority spin, the conduction band minimum 

(CBM) and valence band maximum (VBM) directly get touch at Fermi level 𝐸. along 𝐿𝑊NNNNN 

symmetry line. Another the CBM touches 𝐸. along 𝐾𝛤NNNN symmetry line. For 𝛽-phase, there 

is also a band gap of 0.26 eV in minority spin. The CBM of minority spin (along 𝑋𝛤NNNN) indirectly 

contacts with VBM of majority spin (along 𝑋𝐾NNNN and 𝐿𝑊NNNNN) at 𝐸.. The 𝛼-phase and 𝛽-phase, 

Structural phase 𝑎! mTi mZr mMn mtot ∆E 

𝛼-phase 6.41 1.58 0.80 −2.34 0 0 

𝛽-phase 6.48 1.62 1.15 −2.74 0 0.34 

𝛾-phase 6.39 0.29 0.07 −0.59 0.10 0.03 
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exhibiting a band gap in one of the spin channels and a zero band gap in the other, therefore, is 

called spin gapless semiconductor (SGSs) [142,143]. In SGSs, the 100% spin-polarized carriers 

can be excited from the valence to conduction bands with no energy cost, leading to the feasible 

spin transport, which is advantageous for future spintronic applications [144]. The 𝛾-phase is 

metal, where the CBM and VBM in both majority spin and minority spin across 𝐸., this is in 

consistent with the nearly vanished total magnetic moment estimated in table 5.1.  

 

Fig. 5. 3: Band structures along the high-symmetry lines of the fcc lattice of quaternary Heusler 

compounds TiZrMnAl for 𝛼 -phase, 𝛽 -phase, and 𝛾-phase, where red (blue) denotes the 

majority (minority) spin.  
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5. 4. 2. Anomalous Hall effects  

The calculated AHC values of TiZrMnAl for each structural phases (𝛼, 𝛽, and 𝛾) are 

presented in Fig. 5. 4. The results show that the ⍺-phase possesses a large AHC of          

1470 W-1cm-1 while β- and 𝛾-phase show moderate AHC of 200 and 100 W-1cm-1. Both VASP 

and Fleur give consistent results. Especially, the calculated AHC in ⍺-phase has peak at Fermi 

level 𝐸., while other energy levels (especially energy levels below 𝐸.) are less significant.  

Noteworthy, the AHC of ⍺-phase is quite comparable to that of regular Heusler compound 

Co2MnAl (1800 W-1cm-1) and Rh2MnAl (1500 W-1cm-1), which has a large total magnetic 

moment of 4.04 and 4.06 𝜇$ [132]. Furthermore, the AHC of ⍺-phase is much larger than 

AHC in other discovered compensated ferrimagnetic materials Ti2MnAl (300 W-1cm-1) [23] 

and Mn3Al (−320 W-1cm-1) [131]. The tunable spin transport properties owing by SGSs, large 

AHC, and vanishing total magnetic moments, that makes the stable ⍺-phase of TiZrMnAl to 

be a promising candidate for spintronic application.  
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Fig. 5. 4: AHC 𝜎=> as a function of energy of quaternary Heusler compounds TiZrMnAl for 

𝛼 -phase, 𝛽 -phase and 𝛾 -phase. The red solid line and the blue dash line stands for the 

calculated AHC from VASP and Fleur.   
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Fig. 5. 5: Band structures and Berry curvature Ω?,=>
9 (𝒌). Colors represents 〈𝑆9〉 along the 

same path with Fig. 5. 4.   

Since the AHC can be estimated via Berry curvature, for the shake of finding the 

physical origin of large AHC in the ⍺-phase, we firstly discuss the details of Berry curvatures. 

In Fig. 5. 4, we show the total Berry curvature		ΩA,BCD (𝐤) = 	∑ f[εA(𝐤)]ΩA,BC
D

A  along the same 

high-symmetry lines at Fig 5. 3. The total Berry curvature in α-phase is dominated by the 

gapless band along 𝐿𝑊NNNNN [up to 10000 (bohr2)] and significantly larger than that of β-phase 

(700 bohr2) and γ- phase (250 bohr2). From now on, we will focus on the gapless band along 

𝐿𝑊NNNNN in ⍺-phase, which exhibits a gigantic Berry curvature. The Berry curvature of gapless point 

is general large [19,20], however, the large AHC is generally found in Heusler compounds only 
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when the band crossing between two different spin channels. When the crossing band occurs 

in the same spin channel usually do not give a significant large AHC[122].  

 

Fig. 5. 6: (a) The BZ of fcc, where red line marks the considering symmetry path. Green line 

indicates the mirror plane M110. Band structures in a narrow energy window and Berry 

curvature Ω?,=>9 (𝒌) along 𝐿𝑊NNNNN path with n = 1,3, and 5 (b) without SOI and with (c) SOI for 

𝛼-phase.   

 Since the total Berry curvature is dominant by the contribution of Berry curvature at 

the gapless band along 𝐿𝑊NNNNN symmetry line, we consider the Berry curvature of the gapless 

band along 𝐿𝑊NNNNN for different directions. Here, the position of high symmetry point L is fixed, 
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while the position of W is taken along different direction. Fig 5. 6(a) illustrates our considering 

high symmetry point W points denoted by W1, W2, W3, W4, W5, and W6, which forms the edge 

of hexagonal plane of the BZ of fcc.  

Table 5.2: Location of high symmetry point W for different direction, denoted as W1, W2, W3, 

W4, W5, and W6. Their positions are described in the Cartesian coordinates in units of 

(*+
)
, *+
)
, *+
)

).  

 Position 

W1 0.75 0.25 0.50 

W2 0.25 0.75 0.50 

W3 0.50 0.25 0.75 

W4 0.25 0.50 0.75 

W5 0.75 0.50 0.25 

W6 0.50 0.75 0.25 

 

 In Table 5.2, we list the positions of our considering high symmetry points W.       

Fig 5. 6 shows band structures in a narrow energy window and Berry curvature 𝛺?,=>9 (𝒌) 

along 𝑊𝐿NNNNN  path (b) without SOI and with (c) SOI for α-phase. Without SOI, quaternary 

Heusler compounds have M110 is one of the symmetry operations. Because Wn+1 can be 

obtained by Wn (n = 1, 3, 5) via the symmetry of M110, the gapless bands along 𝐿𝑊?NNNNNN have the 

opposite signs and equal values of 𝛺?,=>9 (𝒌) with the gapless bands along 𝐿𝑊?t,NNNNNNNNN (n = 1,3, 

and 5) [see Fig 5. 6(b)], resulting the zero Berry curvature in total. With SOI along [001], the 

mirror planes, which parallel to the magnetization direction, preserve the direction of spin, thus 

Berry curvature does not flip its sign via M110 mirror planes. As in Fig 5. 6(c), the positive and 
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negative Berry curvatures do not contribute equally anymore, we observe the dominant 

contributions of 𝛺?,=>9 (𝒌) > 0. Furthermore, the gapless band is gapped with SOI. We do not 

have any answer for this observation at this moment, it requires more detail symmetry analyses.   

The magnetism breaks some symmetry of crystal. Therefore, to evaluate AHC 

qualitatively, we extend the Berry curvature to whole BZ. We show in Fig 5. 7, the total Berry 

curvature 𝛺?,=>9 (𝒌) distribution over whole BZ 𝛼-phase without (a) SOI and with (b) SOI. 

Without SOI, the contribution of Berry curvature 𝛺?,=>9 (𝒌) over whole BZ is symmetric.  

During the integration, the equally contribution of 𝛺?,=>9 (𝒌) > 0 and 𝛺?,=>9 (𝒌) < 0 leading 

to the zero 𝛺?,=>9 (𝒌) in total. With SOI, 𝛺?,=>9 (𝒌) > 0 is dominant, giving a rise to the large 

AHC in 𝛼-phase. 

 

Fig. 5. 7: Total Berry curvature Ω?,=>9 =	∑ 𝑓[𝜀?(𝒌)]Ω?,=>
9

? 	distribution over whole BZ for 

𝛼-phase (a) without SOI and (b) with SOI [001].   
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 5. 5. Summary 

In this work, using first-principles calculations, we have investigated the AHE in three 

structural phases of a quaternary Heusler compounds TiZrMnAl. The ⍺-phase, in which Ti and 

Mn form octahedral site, is the most stable phase. The total magnetic moment is compensated 

in 𝛼-, 𝛽-phase, and nearly compensated 𝛾-phase. 𝛼- phase and 𝛽-phase are spin-gapless 

semiconductors, in which their CBM and VBM touch at Fermi level, while 𝛾-phase is metal. 

Despite of the similar equilibrium lattice constant (6.41, 6.48, and 6.39 Å for 𝛼-, 𝛽-phase, and 

𝛾 -phase), as well as total magnetic moments, the AHC is totally different. The ⍺-phase 

possesses a large AHC of 1470 W-1cm-1, while β- and 𝛾-phase show moderate AHC of 200 and 

100 W-1cm-1. Without SOI, the direct gapless bands along 𝐿𝑊NNNNN have the opposite sign of Berry 

curvature via M110 mirror planes, that cancel each other. As a result, the integration of  

𝛺?,=>9 (𝒌) over the whole BZ is zero. With SOI, the symmetry becomes asymmetric, causing 

the governing of 𝛺?,=>9 (𝒌) > 0, that gives a rise to large AHC in ⍺-phase.  
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Chapter 6: Conclusions and outlooks  

 Inspiring by the tunable properties, we have theoretical studied structural stability, 

electronic, and magnetic properties of Heusler compounds, focusing on half-metallicities, 

permanent magnetisms, and anomalous Hall effects. In addition, their potential for practical 

application is also addressed.   

In chapter 3, the alkali-metals-based half-Heusler ACrZ (A = Li, Na, and K; Z = P, As, 

and Sb) compounds are identified as potential half-metallic ferromagnets with wide band gaps 

(1.60 - 2.16 eV). The band gap formation mechanism of ACrZ origins from the sublattice zinc-

blende CrZ, where the hybridization between the Cr-d and Z-p states opens the band gap. In 

addition, the half-metallicity is robust stable against severe in-plane strains and even at Z-term 

(001) surfaces. Considering their thermal stabilities and lattice mismatches with semiconductor 

substates, among studied compounds, LiCrZ and NaCrZ (Z = As and Sb) stands out as the most 

promising candidates for practical applications.   

In chapter 4, we have investigated the feasibility of Fe2MnSn Heusler compound to be 

rare-earth free permanent magnet. Some possible structures are adopted, namely regular and 

inverse cubic, inverse tetragonal, and hexagonal. Large 𝜇!𝑀" of 1.28 T - 1.59 T are found in 

Fe2MnSn regardless of structural phase. In particular, the inverse tetragonal have large uniaxial 

𝐾#  of 2.35 MJ∙m-3 but the structure is unstable. We further demonstrate that the inverse 

tetragonal phase can be stabilized by interstitial doping of light elements. In particular, 6.25% 

H and N can improve the formation energy 𝐻.  of inverse tetragonal up to −11.93 and 

−30.16 kJ∙mol-1. H has good intrinsic magnetic properties, i.e., a uniaxial 𝐾# of 1.66 MJ∙m-3, 

a theoretical energy product (BH)max up to 56 MGOe, a 𝜇!𝐾# of 28 kOe, and 𝜅 of 0.93 while 
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N [𝐾#  = 1.07 MJ∙m-3, (BH)max = 46 MGOe, 𝜇!𝐾#  = 22 kOe, and 𝜅 = 0.73] has a good 

thermal stability since being even more thermal stable by 5.03 kJ∙mol-1 than hexagonal phase.  

In chapter 5, the AHE of a ferrimagnet quaternary Heusler compounds TiZrMnAl is 

investigated. Three possible atomic configuration is considered. The ⍺-phase, in which Ti and 

Mn form octahedral site, is the most stable phase. The total magnetic moment is compensated 

in 𝛼-, 𝛽-phase, and nearly compensated 𝛾-phase. The ⍺-phase possesses an AHC as large as 

1470 W-1cm-1, while β- and 𝛾-phase show moderate AHC of 200 and 100 W-1cm-1, despite the 

vanishing net magnetization. The tunable spin transport properties owing by SGSs, large AHC, 

and vanishing total magnetic moments, that makes the stable ⍺-phase of TiZrMnAl to be a 

promising candidate for spintronic application. The gapless band along 𝐿𝑊NNNNN of ⍺-phase shows 

a gigantic Berry curvature up to [up to 1000 (bohr2)], this is significantly larger than that of β-

phase (700 bohr2) and γ- phase (250 bohr2). However, only the large Berry curvature at gapless 

band along 𝐿𝑊NNNNN is not enough to explain for the large AHC in ⍺-phase. By evaluating the total 

Berry curvature Ω?,=>9 =	∑ 𝑓[𝜀?(𝒌)]Ω?,=>
9

?  over whole BZ, we found that the governing of  

𝛺?,=>9 (𝒌) > 0 after tuning SOI also plays a crucial role in driving a large AHC in 𝛼-phase of 

TiZrMnAl. To understand why 𝛺?,=>9 (𝒌) > 0  becomes dominant, there are more detail 

symmetry analyses need to be done, but we leave this work for future studies.  
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