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Introduction

Digital healthcare is a multidisciplinary concept that incorporates ideas from an
intersection between technology and healthcare. Among other technologies, digital
healthcare includes mobile health (mHealth) applications, electronic health records (EHRs),
electronic medical records (EMRs), wearable devices, telehealth, telemedicine,

personalized medicine, and electronic intensive care units (eICUs) [1].

Healthcare data are classified into image, text, and signal data. [2] These data are usually
atypical, non-standardized, and irregular. Here, we focus on signal data. In the medical
field, biosignals are used to monitor a patient’s condition and inform decision making. A
biosignal is defined as any signal in humans that can be measured and monitored.
Biosignals  include biopotential signals, such as electrocardiogram (ECG),
electroencephalogram (EEG), electromyogram (EMG), and electrooculography (EOG); non-
electrical signals, such as heart sound, photoplethysmogram (PPG), and saturation of
partial pressure oxygen (SpO,); as well as other signals, such as gait cycle, gait speed,

stride, and ballistocardiogram (BCG). Table 1 shows biosignal types.



Biopotentials (wave)

Vital signs (numeric)

Other biosignals

Electroencephalogram, EEG

Electrocardiogram, ECG

Electromyogram, EMG
Electrooculogram, EOG
Magnetoencephalogram, MEG

Heart sound

Body temperature, BT

Blood pressure, BP

Pulse or heart rate, HR

Respiratory rate, RR

Photoplethysmogram, PPG

Saturation of partial pressure

oxygen, SpO,
Ballistocardiogram, BCG
Gait cycle
Gait speed

stride

Table 1. Type of biosignal data



To analyze biosignals, this study uses machine learning (ML) techniques, particularly
deep learning (DL), a subfield of ML, rather than rule-based methods, which are more
commonly used in medical research. In the artificial intelligence (Al) field, rule-based
systems rely on the proficiency of experts in addition to an inference engine to deduce
new information, whereas DL methods learn directly from raw data, extract features, and
adapt without explicit instructions (Figure 1). DL techniques have an advantage in that
they can detect patterns not observed by humans. However, the lack of interpretability of
many ML and DL models is a major limitation, the so-called black box problem. In
addition, unlike humans, current DL models require manual work for cleaning and

normalizing the input data (data preprocessing).



Al (Artificial Intelligence)

- Mimic human

ML (machine learning)

- Extreacting features Rule based system
- Expert system

- Automation system

DL (deep learning)
- Learning important
features by themselves

Figure 1. Schematic diagrams of Al tools: Machine learning and deep learning vs. rule-

based systems



In this study, first, we address the problem of medical data dependency caused by the
differences in AD resolution and sampling rate of the measuring equipment. Specifically,
we develop a DL-based model for AF detection (binary classification into AF and non-AF
patients) using ambulatory (Holter) ECG data obtained from three datasets. Second, we
develop a DL-based model for real-time indirect biosignal estimation. Finally, we
construct a generative adversarial network (GAN) model to synthesize multi-lead ECG

from single-lead ECGs, and verify its clinical applicability for diagnosis.



CHAPTER 1. ECG data dependency for atrial fibrillation

detection based on residual networks

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. It occurs when
disordered or rapid electrical signals cause the atria to contract too quickly and
chaotically. AF is associated with five-fold increase in stroke risk and two-fold increased
risk of death. Estimates of the prevalence of AF in the United States range from
approximately 2.7 to 6.1 million and the number is expected to rise to 12.1 million in
2030 [3, 4]. Worldwide, the estimated number of individuals with AF in 2010 was 33.5
million (0.5% of the world’s population). Particularly, approximately 9% of people aged 65
and older had AF, as compared to only 2% of people younger than 65 years [5]. In this
study, we developed a DL model for AF detection in patients (binary classification into AF
and non-AF patients) using ambulatory (Holter) ECG data obtained from three long-term

databases.

Data acquisition is an important issue in medical research using DL techniques. That is
because it is not easily acquired and a huge cost can be incurred for data collection [6].
Additionally, if data augmentation is applied to reduce cost, there is a limit to the
reliability of data. Therefore, another method is to collect data from different sources,
such as hospitals and/or equipment, as metadata. However, when data from various
public databases are collected and used, we need to ensure that the DL model is not
biased by learning the characteristics of each dataset. Therefore, in our study, we test the
data dependency of the DL model for AF detection using three datasets [7].
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AF detection deep
With multi-ECG learning Verification of

database (Metadata) modeling(ResNet) dependency
train & test

Figure 2. Verifying ECG data dependency for atrial fibrillation detection using residual

networks



In this study, we used a residual neural network (ResNet) model, developed by Kaiming
He, which won the 2015 ImageNet Challenge [8]. It attempted to improve learning of
deep plain neural networks by overcoming the vanishing gradient problem in models
with many layers. Specifically, it has skip connections that act as gradient superhighways,
allowing gradients to propagate to deep layers before they are attenuated to small or
zero values. . For comparison, the architectures of VGG, plain, and residual neural networks
are shown in Figure 3. In addition, Figure 4 compares the performance of different plain
neural networks and ResNet architectures with the increase in layers. From the figure, we
find that the accuracy of plain neural networks decreases as the number of layers
increases. Conversely, the performance of ResNet architectures is improved even in
networks more than 100 layers. Thus, we can ensure that ResNet architectures overcome

the gradient vanishing problem.
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Figure 3. Architectures of VGG-19, 34-layer plain, and 34-layer residual networks [8]
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20—

ResNet-20
ResNet-32
~ResNet-44
=—ResNet-56
=—ResNet-110
9
‘,6“ ,,,,,,,,,,,,,
5
Sf—plin20] ~ ~ " T T T T ONTU TN SE T T T T T YO RA T
plain-32
= plain-44
= plain-56 . ) . . G .
00 1 2 3 4 5 6 3 5 6
iter. (1e4) iter. (1e4)

Figure 4. Performance of plain neural network (left) and residual network (right) with
respect to the number of layers: Dashed lines denote training error, and bold lines

denote testing error. [8]
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In this study, we used a ResNet model for AF detection using data from the long-term
Atrial Fibrillation database (LTAFDB) [9], MIT-BIH Atrial Fibrillation database (AFDB) [10],
and MIT-BIH Arrhythmia database (MITDB) [11]. Table 2 shows the characteristics of each
database with different measurement periods, sampling rates, and analog to digital (AD)

resolution.
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LTAFDB AFDB MITDB

No. of records 84 records 25 records 48 records
Channel 2 Ch 2 Ch 2 Ch
Duration 24 to 25 hours 10 hours Half-hour

Sampling rate 128 Hz 250 Hz 360 Hz

Resolution 12 bit 12 bit 11 bit

Voltage range 20 mV +10 mV 10 mV

Acquisition Boston's Beth Israel Boston's Beth Israel

Not reported

Location Hospital Hospital

Table 2. Characteristic of the three databases: Long-Term Atrial Fibrillation
database(LTAFDB), MIT-BIH Atrial Fibrillation database (AFDB), MIT-BIH Arrhythmia

database (MITDB)
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To obtain our training data, the raw ECG data of all databases were cut in units of 10
seconds, as shown in Table 3 Next, we downsampled all data to 128 Hz to ensure the
same data format. Additionally, we used z-score normalization. For our model, one ECG
database was used for training and the other two databases were used for testing. Figure

5 shows an overview of the binary classification process.
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Training dataset Test dataset Total dataset
Non-AF AF Non-AF AF Non-AF AF
LTAFDB 460,740 588,990 115,615 146,816 576,355 735,806
AFDB 79,960 53,535 19,944 13,428 99,904 66,963
MITDB 9,696 1,213 2,435 291 12,131 1,504

Table 3. Number of cropped 10-second ECG units

14



Different databases

Preprocessing

Trained network

Test dataset / 20%

Down-sampling

P
1 | MITDB AFDB LTAFDB
\ I _____________________
Raw ECG 10 second
signal segment

& Normalization

| LTAFDB |

Training deep network (1-D Resnet)

\ 4

I
I
1| LTAFDB

v

Trained network

A

y

Trained network

AF

DB

Unseen data
=== N

(iros )
umaron |

y

Unseen data

(wimos )

\ 4

LTAFDB

I
I
AFDB ,l

Binary classification (AF vs Non-AF)

Figure 5. Overview of the binary classification process
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In this study, we employed different ResNet architectures (i.e., ResNet 18, ResNet 34,
ResNet 50, and ResNet 152) and evaluated their performance. In all models, two types of
residual blocks were used. When the previous and present layers had the same
dimensions, residual block type 1 was applied, whereas when the previous and present
layers had different dimensions, residual block type 2 was applied. The architecture of
ResNet 50 is shown in Figure 6. The rest of the models are similarly configured except for

the number of layers.
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F(X)

-

1x1 Conv + BN

Relu

| 13 Conv + BN |

Relu

1x1 Conv + BN

F(X) + Xé}

[

Residual Block 1

1x1 Conv + BN

Relu

1x3 Conv + BN | | 1x1 Conv + BN

RelLu

1x1 Conv + BN

Relu

Residual Block 2

Figure 6. ResNet 50 architecture
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Residual Block 1, 256
Residual Block 1, 256
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Results for the trained models are shown in Table 4. In general, the accuracy of the
trained models on MITDB was the lowest, as compared to their performance on other
databases due to the small size of the MITDB database. As shown in Table 3, the total
number of instances in MITDB was 13,635 (non-AF = 12,131, AF = 1,504), which was very
small. Additionally, AF cases were approximately 8 times higher than non-AF instances,
indicating a severe data imbalance. Meanwhile LTAFDB contained a total of 1,312,161
segment (non-AF = 735,806, AF = 576,355) and the ratio of AF to non-AF cases was
approximately 0.78, indicating the suitability of the dataset for training. The AFDB dataset
had 166,867 segment (non-AF=99,904, AF=66,963) which was less than that of LTAFDB,
but higher than MITDB. Additionally, the AFDB dataset had a ratio of non-AF to AF of
1.49, indicating that the dataset was not biased and thus, it was adequate for training.
The confusion matrix for the performance of each model on each test dataset is shown

in Figure 7, and the receiver operating characteristic (ROC) curve is shown in Figure 8.
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Test datasets

Trained model

LTAFDB AFDB MITDB
Model Training dataset

LTAFDB 99.04 92.03 82.10

ResNet 18 AFDB 85.01 9941 86.68
MITDB 74.48 70.98 99.89

LTAFDB 98.70 92.19 81.14

ResNet 34 AFDB 84.94 99.27 78.14
MITDB 63.65 65.55 99.78

LTAFDB 98.66 92.13 83.90

ResNet 50 AFDB 84.35 99.20 80.48
MITDB 68.79 65.61 99.82

LTAFDB 98.53 92.00 84.67

ResNet 152 AFDB 83.87 99.21 81.14
MITDB 66.23 64.41 99.56

Table 4. Accuracy of each model on each test dataset
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Train: LTAFDB, Test: LTAFDB Train: LTAFDB, Test: AFDB

Non-AF

True label

APl L 4.74

95.26

Train: AFDB, Test: LTAFDB Train: AFDB, Test: AFDB

Non-AF IEEBUAN 10.86

Train: LTAFDB, Test: MITDB

82.46 17.54

4.12 95.88

Train: AFDB, Test: MITDB

78.64 21.36

Train: MITDB, Test: MITDB

1.03

]
Q
)
()]
c
(= AF{ 19.43 80.57 0.95 99.05
Train: MITDB, Test: LTAFDB Train: MITDB, Test: AFDB
— Non-AF 4.03 3.81
b
]
()]
c
= AF 47.38 20.20
Non-AF AF Non-AF AF
Predicted label Predicted label

Figure 7. Confusion matrix for the performance of each model on each test dataset
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We experimentally investigated the data dependency of DL-based AF classification
using ResNet architectures and raw ECG signals. As indicated in Table 4, the highest
accuracy for each trained model (ResNet 18, 34, 50, and 152) was obtained by evaluating
the models on the test dataset extracted from the same source that contained the
training dataset. In contrast, the model accuracy decreased when they were evaluated on
different datasets, other than the one containing the training dataset. In general, all
ResNet architectures showed good performance without the problems of exploding and
vanishing gradients, even in networks with many layers. However, the data dependency
occurred regardless of the depth of the ResNet architecture. Therefore, a deeper network
could not resolve the data dependency problem. On unseen data, when the true positive
rate increased, the false positive rate tended to rise as well. Further, the true negative
and false negative rates showed the same trend. Unlike the evaluation results on own
database, if the trained model showed a high sensitivity for external data, specificity was
low. Similarly, high specificity for external data led to low sensitivity in trained models.
These results imply that the predictions of the trained models on external data may be

biased.

Although data dependency is a widely known phenomenon in deep learning, especially
in medical signal processing, this study verifies this phenomenon for the first time for 1-
D signals, such as biosignals. Additionally, although we employed ResNet architectures in
our study, which is the most widely used ECG classification algorithm, we could not
overcome the data dependency problem. Further, we used various normalization
methods; however, the dependency problem could not be completely resolved. For

example, all trained ResNet 50 models trained on LTAFDB, AFDB, and MITDB showed
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specificity of more than 95% and a false positive rate of approximately 2-4% when

evaluated on external data extracted from NSRDB

The data dependency problem in DL models can be caused by several aspects. Data
imbalance is one of the most common causes. If a database has AF events far less than
normal rhythms, which is common in medical databases, the trained model can be
biased, resulting in reduction in performance when tested on external datasets. Another
problem is the noise in ECG signals caused by motion artifacts or other reasons. The
physical movement of patients when measuring ECG signals can cause wandering of the
ECG baseline or unwanted noises. These noises can be minimized by digital filtering or
other signal processing techniques. However, the original ECG signal could be distorted
or lose its characteristic waveform due to the use of preprocessing methods, resulting in
lower performance of DL models. Another problem is the discrepancy in the
measurement values. As there are several companies making devices for measuring ECG
signals, these devices have different hardware settings (e.g., amplifier configuration, filters,
and gain) and software settings (e.g., sampling frequency and resolution). However,
waveforms from approved ECG measurement devices do not differ largely. Additionally,
resampling and normalization techniques can reduce such problems; however, they

cannot eliminate them entirely.

It can be concluded that it is necessary to validate the DL-based AF detection

algorithm using various external databases to overcome the problem of data dependency.
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CHAPTER 2. Real-time indirect continuous arterial blood
pressure measurements from ECG and PPG waveforms using

deep learning

Blood pressure (BP) is defined as the force applied by circulating blood against any unit
area of blood vessels as it passes through them. It is one of the major vital medical signs.
With regard to hemodynamics, accurate measurements of BP can enable optimal
intervention in unstable patients and play an important role in determining long-term
perfusion. An abnormal BP (e.g., high or low BP) constitutes a major risk factor for
cardiovascular disease (CVD), leading to heart attacks and can even cause blindness or
cerebral apoplexy. [12, 13]. The range of blood pressure is divided into normal, low, and
high blood pressure. The main indicators are the mean arterial pressure (MAP), systolic
BP (SBP) and diastolic BP (DBP). MAP is calculated by SBP and DBP and is used as an

indicator to check the trend of blood pressure. (eq. 1)
MAP = DBP + 1/3 Pulse pressure (eq. 1)

BP measurement methods are classified into non-invasive blood pressure (NIBP) and
invasive blood pressure (IBP) methods. NIBP measurement methods can be used without
pain, whereas IBP methods involve pain, infection, inflammation, and bleeding, but it can
be measured continuously [14]. Therefore, NIBP methods are usually used in wards or for
health checkups, whereas IBP methods are used in critical situations such as ICU

environments. There are two types of NIBP measurement methods: Korotkoff sound-
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based and oscillometry-based.

The two methods are divided depending on whether the measurement is performed by
sound or the intensity of pressure. The Korotkoff sound-based BP measurement is usually
used a ground truth, while the oscillometry-based method is mainly used in the case of

an automatic blood pressure monitor.

However, owing to the need of a cuff, the two methods are limited as measurement is
difficult if there is a problem in the arm; moreover, it is impossible to undertake
continuous measurement. Therefore, for decades, numerous studies have been
performed to measure blood pressure using biosignals [15-19]. Biosignal-based methods
used the pulse arrival time (PAT) and pulse transit time (PTT) for BP measurement. The
two parameters of ECG and PPG signals are used to construct an equation for BP
estimation by utilizing the difference between the time the heart contracts and the time
the pulsation of the contracted BP reaches the fingertips and toes. However, although it
is possible to estimate the level of the trend of the actual SBPR it is difficult to estimate
the absolute value. In particular, there is a limitation to applying it to all people because
of the possibility of generating a few errors while comparing the normal and patient
groups. In this study, we developed a DL model for real-time indirect continuous arterial

BP measurements using ECG and PPG waveforms.

We obtained our data from the Medical Intensive Care Unit (MICU) of the Seoul Asan
Medical Center Hospital for 980 patients between April 01, 2018 and May 31, 2019. The
raw ECG, PPG, and ABP data were collected from a patient monitor (GE B650, General
Electric, USA) in MICU. This study was approved by the Institutional Review Board of the

Seoul Asan Medical Center Hospital (IRB No. 2021-0833). To collect stable states of ECG
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and PPG data for the 980 patients, we collected data on the state of the patient 30
minutes and up to 3 hours after entering the ICU per patient. Missing or corrupted data
caused by motion artifacts were excluded from our dataset. Additionally, patients with
SBP of less than 50 or more than 200 mm Hg were excluded, as abnormal. Moreover,
cases where ICU hospitalization time was less than 30 minutes were excluded. Finally, a
total of 284 patients were selected. Information on patient screening is shown in Figure 9.
For long-term data, both ECG and PPG data were cropped for 2 seconds, and then the
ECG data were downsampled from 240 Hz to 60 Hz. The downsampling was carried out
despite the disappearance of electrophysiological features of the data because it was
more important to ensure that the information was on the same time axis along the
correlation between PPG and ECG signals. In addition, we selected a segment of 2
seconds to ensure that the output data were as close to real-time data as possible, since
SBP and DBP are output once every 2 seconds. The details of the data structure are

presented in Figure 10.
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Patients in intensive care unit (ICU)

2018.04 ~ 2019.05
(980 patients)

Excluded (515 patients)

Patients with motion artifacts.

(75 patients)

Cropping for 2s

Enrolled patients
(465 patients with 1518600
recordings)

Missed or corrupted data.
(440 patients)

Excluded (33 patients with 99160 recordings)

Patients with a blood pressure range
below normal.

Enrolled patients
(432 patients with 1419440
recordings)

(50 < SBP < 200)

Excluded (148 patients with 292570 recordings)

Patients with less than 30 min or more
than 3 h of recorded data.

Enrolled patients
(284 patients with 1126870
recordings)

: ¥
Training set Validation set Test set
190 patients with 33 patients with 61 patients with
788810 recordings (70%) | | 112690 recordings (10%) | | 225370 recordings (20%)

Figure 9. Patient data screening and composition of the training and test datasets
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Figure 10. Data preprocessing and configuration for training

28



The DL model was constructed based on a convolutional recurrent neural network (C-
RNN) by combining a ResNet architecture and the long short-term memory (LSTM)
model. ECG and PPG were used as the input data, 2 X 60, and SBP and DBP were used
for labeling data. We described the ResNet architecture in detail in Chapter 1. Regarding
LSTM, as a type of recurrent neural networks (RNNs), it stores sequential features and
additionally learns the correlations between previous and current data. Hence, it plays a
role of additionally delivering continuity of time-domain data for ECG and PPG

waveforms. The architecture of our model is shown in Figure 11.
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Figure 11. Architecture of the blood pressure estimation model
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To evaluate the performance of the proposed blood pressure estimation model, we
used the measures of mean absolute error (MAE), root mean square error (RMSE), and
mean absolute percentage error (MAPE). Table 5 shows the performance evaluation
results. The model showed a relatively high accuracy for SBP estimation, and less

accuracy for DBP estimation.
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SBP DBP MAP
Correlation
0.96 0.90 0.92
Coefficient, R
MAE (mmHg) 5.09 5.55 4.07
RMSE (mmHg) 6.33 7.07 5.16
MAPE (%) 431 7.93 454

Table 5. Performance evaluation for the blood pressure estimation model
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Figure 12 visually presents correlation plots and Bland-Altman plots for SBP, DBP, and
MAP comparing the ground truth to the estimated results. The dotted line represents the
95% confidence interval. The correlation plots verify the linearity by matching the
estimated BP and the ground truth to the X and Y coordinates. Meanwhile, the Bland-
Altman plots verify the normal distribution and bias of the model performance by fitting
the difference between the estimated BP and the ground truth to the Y axis, and the
mean between both to the X-axis. Additionally, as we verified the results only at a
specific point in time, we fitted the continuous estimated BP and ground truth to verify
whether the BP was estimated as a continuous trend. Hence, we verified the existence of

a similar trend, to a certain degree, even in rapidly changing periods (Figure 13).

33



- N N
=5 S N
o S G

-
o
o

Estimated value (mmHg

SBP (R = 0.96)

50 75 100 125 150 175 200
Actual value (mmHg)

DBP (R = 0.90)

-
@
=3

-
o
=)

=
=
S

-
~
°

-
°
>

@
S

60

Estimated value (mmHg)

40

20

20 40 60 80 100 120 140 160 1
Actual value (mmHg)

MAP (R = 0.92)

Estimated value (mmHg)
= = - - N
o o S <) G = S
3 3 5 & 3 & 8

N
o

50 75 100 125 150 175 200
Actual value(mmHg)

Real value - estimated value (mmHg)

Real value - estimated value (mmHg)

Real value - estimated value (mmHg)

o
S

s
S

o

|
N
°

!
IS
S

|
-
o

B
S

N
o

o

!
N
°

!
EN
S

N
=)

SBP Bland-Altman Plot

== ifiid
""" md + 1.96*sd
—— md - 1.96*sd

40 60 80 100 120 140 160 180 200
Mean value (mmHg)
DBP Bland-Altman Plot
--= md
""" md + 1.96*sd
—— md - 1.96*sd

20

40 60 80 100 120 140 160
Mean value (mmHg)

MAP Bland-Altman Plot

—- md
------ md + 1.96+sd
—— md - 1.96%sd

40

60 80 100 120 140 160
Mean value (mmHg)

R: Pearson correlation coefficient

md: mean of the difference; sd: standard deviation of the difference

Figure 12. Correlation plots and Bland—Altman plots for SBP, DBP, and MAP
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Further, we tested whether the proposed BP estimation model adheres to the
international standards of BP measurement. First, we confirmed the compliance of the
estimation model with the BP monitor standards suggested by the British Hypertension
Society (BHS). The standards have grades A, B, C. If a BP monitor has grade B or higher,
its performance is confirmed to comply with the BHS standards. The proposed model
received B, B, and A grades for SBP, DBP, and MAP respectively, in accordance with the
BHS standards. In addition, the Association for the Advancement of Medical
Instrumentation (AAMI) states that the mean difference and standard deviation should be
less than + 5mmHg and + 8mmHg, respectively. The performance of all BP monitors has
to adhere to these standards when the number of subjects is 85 or more. In this study,
the proposed model satisfied the aforementioned international standards (both BHS and

AAMI) as shown in Tables 6 and 7.

36



Absolute difference

Grade

<5 <10 <15

SBP 56.5 88.6 98.5 B
Proposed
DBP 53.6 85.1 96.4 B
model

MAP 679 947 99.3 A

Grade A 60% 85% 95%

BHS Grade B 50% 75% 90%

Grade C 40% 65% 85%

Table 6. Compliance of the proposed model with standards for blood pressure monitors

as suggested by the British Hypertension Society (BHS)
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MD SD

Proposed SBP —0.04 6.31
model DBP 0.01 7.07
AAMI SBP / DBP <5 <8

Table 7. Compliance of the proposed model with sphygmomanometer standards as

presented by Association for the Advancement of Medical Instrumentation (AAMI)
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Table 8 presents a comparison of the proposed method with previous DL techniques
for estimating BP using biosignals. Previous studies performed training based on

continuous BP using MAE and SD as evaluation metrics for the BP prediction accuracy.

Miao et al [20]., Eom et al [21], and Li et al [22]. estimated BP using at least two
biosignals and reported performance results comparable to those of the proposed model.
Unlike other studies, however, the proposed method can analyze the data output at
intervals of 2 seconds in real time. Hence, it is expected to be more useful in urgent
situations, such as in clinical surgeries. Other studies have also reported BP monitoring
based on NIBP methods using cuffs indirectly and discontinuously. However, in this study,
the BP at the arteries was directly measured via IBP monitoring, which was considered as
the ground truth. Although the accuracy of the method by Eom et al. was high, ensuring
credibility was difficult because the data used were limited to only 15 subjects. Hence,
the BP results of our method are more accurate and have greater applicability. In
addition, using clinical data instead of public data, as in our study, can help increase
reliability, as the training involves more diverse patient groups. Furthermore, the
proposed method utilizes shorter learning periods because processes such as feature

extraction are not included.
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SBP DBP MAP
Author Model Input data Dataset
MAE SD MAE SD MAE SD
Ours 284 subjects and 506 631 5.55 7.07 4.07 5.17
Resnet + Bi-LSTM Raw ECG, PPG _
Ours in AF 23 AF patients 6.32 811 721 7.98 5.59 6.94
30 arrhythmia
Fen Miao et al. Resnet + LSTM Raw ECG 7.10 9.99 461 6.29 4.66 6.36
patients
Raw ECG, PPG,
H Eom et al. CNN + Bi-GRU BCG 15 subjects 4.06 4.04 3.33 342 - -
Featured ECG,
YH Li et al. Resnet + Bi-LSTM 315 subjects 6.73 1451 2.52 6.44 - -

PPG

Table 8. Comparison of the performance of the proposed model with that of other selected studies
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Moreover, hypertension is likely one of the major causes of AF [24]. Therefore, accurate
measurement of BP in AF patients is important, especially, for the elderly, as hypertension
with sudden elevations in SBP or SBP exceeding 120 mmHg is associated with an
increased risk of AF accidents [25-27]. The ECGs of the AF and normal patients exhibit
visual differences in terms of the waveforms. That is because the hearts of AF patients
may not produce sufficient BP due to atrial problems. Therefore, we estimated the BP of
AF patients using DL models that can learn such features. In this study, the AF dataset
was added as part of transfer learning because the probability of AF occurrence in an
ICU environment is approximately 5%. That is, our dataset included approximately 14.2
patients with AF from 284 patients in ICU. We added the AF dataset with 23 AF patients.
Among them, two patients were excluded because they had motion artifacts or their
hospitalization time was less than 30 min. Among the remaining 21 AF patients, the data
of 14, 3, and 4 patients were used as the training, validation, and test datasets,
respectively, to evaluate the performance of the proposed model with respect to
estimating BP in AF patients. The total number of ECG recordings in the test dataset was
18,540. The test results are presented in Fig. 13. We evaluated the estimates of BP in AF
patients using existing performance evaluation methods. The MAE and SD values of the
SBP, DBP, and MAP were 6.32 mmHg and 8.11 mmHg, 7.21 mmHg and 7.98 mmHg, and

5.59 mmHg and 6.94 mmHg, respectively.
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CHAPTER 3. Multiple Electrocardiogram Generator with

Single-Lead Electrocardiogram

An ECG is a test used to measure the rhythm and electrical activity of the heart. The
limb-lead and chest-lead methods are the standard ECG measurement methods. In the
limb-lead method, electrodes are attached to the left and right arms as well as the legs,
and we can observe the formation of the Einthoven's triangle. In the chest-lead method,
electrodes are attached to the surface of the chest near the heart. Limb leads are
represented as [, II, Ill, aVR, aVL, and aVF, whereas chest leads are represented as V1, V2,
V3, V4, V5, and V6. The heart is a three-dimensional structure; the limb leads measure
the frontal plane of the heart, while the chest leads measure the transverse plane of the

heart.

An ECG is used to diagnose and monitor the heart condition. The resting ECG, Holter
ECG, and treadmill method are the conventional ECG measurement methods. In resting
ECG, electrodes are attached to the patient’s body, and the ECG signals are measured for
10 seconds while the patient is lying down. A Holter ECG monitor is a portable device
used for monitoring cardiac activity. In this method, three to eight electrodes are
attached to observe heart activity over long periods to detect arrhythmias. In treadmill
ECG, electrodes are attached to the body of the patient, and ECG signals are measured
while the patient is exercising to determine the possibility of heart disease. Generally, in

conventional methods, the use of multiple electrodes is limited.
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Unlike conventional methods, currently, ECG signals can be estimated using a variety of
devices such as smart wearable devices. Smartwatches have evolved from being a
fashion accessory to a comprehensive health and fitness device. One of the biggest
health features of current smartwatches is their ability to measure a single-lead ECG
signal. However, although wearable devices are less complex, they provide fewer details
owing to single-lead measurement. In contrast, a 12-lead ECG measured in hospitals can
obtain more detailed readings of heart signals. Nevertheless, the devices used in
hospitals are complex and expensive, as several small sensors called electrodes are
attached to the arms, legs, and chest of the patient on one end and are wired to ECG
recording machines on the other end. Therefore, to overcome these limitations, ECG lead

conversion has been widely studied.

Several studies have attempted to reduce the number of electrodes used in multi-lead
ECGs. The vector cardiography (VCG) method was developed by displaying the spatial
locations of ECG waveforms dependent on time. To perform this method, three
orthogonal leads (i.e., X, Y, and Z) are required, wherein X and Z constitute the transverse
plane, while Y and Z constitute the sagittal plane. Then, the Dower transformation is used
to calculate the coefficients to reconstruct the 12-lead ECG data from the X, Y, and Z
signals, based on Frank's lead system [23, 24]. Field et al. presented a dipole-based
hypothesis of VCG based on Frank E, A, I, and S, where E, A, I, and S are the ECGs
recorded at four sites [25]. Dawson et al. presented an affine transformation based on
the previous Dower transformation [26]. However, these methods require complex

mathematical calculations and parameter changes, and the results vary depending on the
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measurement position.

Therefore, various DL methods, such as CNNs, RNNs, LSTM, and GANs were applied
For ECG signal classification and prediction [27, 28]. GANs have demonstrated excellent
performance in the field of image synthesis [29-31]. However, in the field of signal
synthesis, GANs have not matured yet and are mainly used for data augmentation. In
particular, the SynSigGAN model can generate biomedical signals, which are
preprocessed by discrete wavelet transformation, with a generator that uses Bi-Grid LSTM
layers [32]. However, inputs are treated as latent variables during the synthesis process,
and therefore their use is limited to data augmentation. Shin et al. proposed a method
for generating PPG signals from ECG signals using an LSTM generator and a CNN
discriminator [33]. Although the evaluation scores between the reference and generated
signals were high, the dicrotic notches of PPG signals were not properly generated.
Wulan et al. used WaveNet, spectroGAN, and wavelet GAN models to generate ECG
signals [34]. However, they managed to only generate one beat signal from lead IL
Additionally, for the WaveNet model, the resolution was low, and the learning time was
long. Lee et al. proposed the R-peak alignment and time sequence embedding method
to transform one-dimensional time-series data into two-dimensional owing to the better
performance of GANs on two-dimensional time series; the model inputs are lead 1I [35].
The proposed R-peak alignment method was effective, as chest leads were converted
from limb leads with high accuracy. However, the intervals between P-Q-R-S-T in the ECG
signal were not equal, and choosing R-peak as the median value resulted in more than

one beat while preprocessing the data.
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Studies on generating biosignal (e.g., ECG) synthetic data using GANs have achieved
promising results. However, using limb lead I as an input to generate or be converted
into other leads has not been investigated. Moreover, most prior studies have generated

only one-beat signals.

Furthermore, although lead II contains more information than lead I, the electrodes
must be attached to the patient’s legs. [36] However, using wearable devices, such as
smartwatches, ECG signals can be obtained from the arm corresponding to lead L
Different from previous studies, this study uses lead I, obtained from wearable devices, as
the input for the learning and generating processes. Then, using our proposed method,

12-lead ECGs can be generated from single-lead ECGs for further diagnosis purposes [37].

We trained our model on two independent datasets and one combined dataset. For
Experiment 1, the PTB-XL dataset was used as the training dataset, and the China dataset
was used as the test dataset. For Experiment 2, the China dataset was used as the
training dataset, while the PTB-XL dataset was used as the test dataset, as depicted in
Figure 14. For Experiment 3, both the PTB-XL and China datasets were used as the
training dataset, as shown in Figure 15. In this study, two datasets were combined to
obtain more records for learning. Moreover, the evaluation scores of Experiments 1, 2,
and 3 were compared. Figure 16 depicts the overall structure of the proposed model.
After learning, the signals generated by the optimized GAN model were compared to the
reference ECG signals using the Fréchet distance (FD) score and MSE. Furthermore, after

reconstruction, these signals were plotted in the ECG paper format.
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Figure 15. Data selection and segmentation for Experiments 1 and 2.

47
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Figure 16. Data selection and segmentation for Experiment 3.
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The 12-lead ECG data used in this study were obtained from the PTB-XL and China
datasets, which are available on PhysioNet [38, 39]. Table 9 lists the clinical and
demographic features of each dataset. The PTB-XL dataset contains 21,837 records
obtained from 18,885 patients. The China dataset contains 10,646 records obtained from
10,646 patients. The duration of the records in the PTB-XL and China datasets is 10 s.
The sampling rate of both datasets is 500 Hz, and the sampling points are 5,000 in each
record. All 12-lead ECG signals were used in this study. Lead I was used as the input for

our model, and the remaining leads were the reference signals.
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Parameters PTB-XL database China database Description
Age (years) 59.83 + 16.95 59.18 + 19.03 -
Gender (male: female) 11379: 10458 5956: 4690 -
Weight (Kg) 70.99 + 1597 - -
Height (cm) 166.71 + 10.86 - -
Number of patients 18885 10646
Diagnostic statement
NORM 9528 5419 Normal ECG
STTC 5788 - ST/T-Change
HYP 2819 - Hypertrophy
MI 6886 - Myocardial Infarction
CcD 5772 - Conduction Disturbance
Rhythm statement
SR 16782 1826 Sinus Rhythm
AFIB 1514 1780 Atrial Fibrillation
ST 826 1568 Sinus Tachycardia
SA 772 - Sinus Arrhythmia
SB 637 3889 Sinus Bradycardia
PACE 296 ) Normal Functioning
Artificial Pacemaker
SVA 157 ) Supraventric'ular
Arrhythmia
BIGU 82 - Bigeminal Pattern
AF 73 445 Atrial Flutter
SVT 7 cg7 Supraventricular
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PSVT 24

TRIGU 20

SI -

AT -

AVNRT -

AVRT -

SAAWR -

399

121

16

Paroxysmal
Supraventricular

Tachycardia
Trigeminal Pattern
Sinus Irregularity
Atrial Tachycardia

Atrioventricular Node

Reentrant Tachycardia

Atrioventricular

Reentrant Tachycardia

Sinus Atrium to Atrial
Wandering Rhythm

Table 9. Evaluation Score for Experiment 1
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The 10 s recordings obtained from the PTB-XL and China datasets were divided into
four segments, the duration of each was 2.5 s. Thus, we obtained 87,348 and 42,584

segments for the PTB-XL and China datasets, respectively.

The GAN architecture consists of two main networks: the generator and discriminator
[40]. It is based on a minimax game between the generator and discriminator networks.
In this study, the generator used lead I as the input and synthesized the remaining leads,
while the discriminator distinguished the generated signals from real-world ones. Figure
17 depicts the overall architecture of the proposed method. Our model follows the main
objective of conditional GANs, which learn to map according to signal x and random

noise vector z to y [41, 42]. It is expressed as:

Legan(G,D) = By, [logD(x, )] + Ey ,[log(1 — D(x,G(x,2))],  (2)

L11(G) = Eyy llly — G(x, 2)], 3)

where G attempts to minimize the objective of GAN (2) against D that attempts to
maximize it. We used the L1 loss function. Our final objective of GAN can be represented

as:

G*=arg mGin mngC@AN(G,D) + AL;1(G). (3)
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The waveform of each lead is similar. Moreover, there are two to four beats in a 25 s
ECG signal. Therefore, the generator of the proposed method is composed of U-net
based encoder-decoder. The U-net generator is depicted in Figure 18. To avoid the
bottleneck skipped connection, all channels were concatenated at corresponding layers
[43]. The encoder part consisted of seven convolution layers. Batch normalization and the
Leaky RelLU activation function were used in all layers, except for the first layer. The
decoder consisted of seven upsampling convolution stacks. In general, data are usually
normalized to [-1 1] or [0 1]; however, unlike images, ECG signals do not have minimum
and maximum resolution values. In this case, the min-max normalization method is
preferred. However, normalizing for each patient using minimum and maximum values
could result in an output range of [-1 1], very different from the real-world ECG signals.
To overcome this limitation, at the last layer of the decoder part, Leaky ReLU was used as
an activation function instead of the hyperbolic tangent. The slope for all Leaky RelLU

functions was 0.2, while the kernel size and stride length were 4 and 2, respectively.
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Figure 18. Architecture of the U-net generator
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The discriminator depicted in Fig. 18 classifies each N patch in a signal as real or fake
by labeling it as one for real and zero for fake. N is smaller than the full-size signal and
is of high quality. The PatchGAN discriminator has an advantage in that it has few
parameters and can be applied to longer signals. It contains five convolution layers with
batch normalization and Leaky RelU activation functions. After the last layer, a
convolution layer is added to map one-dimensional output, followed by a Sigmoid
function, further resulting in a discriminator’s receptive field of 142. In this study, a slope
of 0.2 for all Leaky ReLU functions, a kernel size of four, and a stride length of two were
used. The learning rates were set to 0.0005 and 0.0001 for the generator and
discriminator, respectively. In addition, the Adam algorithm was used for hyperparameter
optimization, and the batch size was set as 32. A total of 11 models were trained for
generating 11 leads. The complete process of the proposed method is depicted in Figure

20.
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Figure 19. Architecture of the discriminator based on PatchGAN
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As depicted in Figure 21, the 12-lead ECG signals generated from the optimized GAN
and corresponding signals were reconstructed. Then, the reconstructed 12-lead ECG
signals with a duration of 10 s were evaluated using the FD and MSE scores. FD scores
are used to find the similarity between curves, while MSE scores calculate the average
difference between two signals. In this study, the FD score validated the P-Q-R-S-T sync
between generated and reference signals, and the MSE score verified the difference in
amplitude between signals. Moreover, for specific validation of ECG signals, the Bland-
Altman plot and difference values between segments, such as RR interval, QRS duration,

QT interval, and ST segments, were calculated.

59



(a) (b)

T LM* | I‘“L“WW”’TT"\'T

ML«MLJWLW w s

J wl/ e l s »L.JNLLJTJ.,\ mu«unwuﬂu

(c) (d)

%Jﬁwwﬁﬁ“;

WMJM'

E@%&kﬁ%ﬂ%&gkéﬁk %w%«ﬁw%ﬁ*%%kww%

D e
LML$&WM$WJJJ%W&

%%%%@Mw@%%&%%%%ww%wwmw

Figure 21. Generated samples by the proposed method. Dark lines represent the
reference signals, and blue dashed lines are the generated signals. Here, (a) and (b) are
samples of low and high evaluation results of Experiment 1, (c) and (d) are samples of
low and high evaluation results of Experiment 2, and (e) and (f) are samples of low and

high evaluation results of Experiment 3.
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To train our model, two different activation functions were used: hyperbolic tangent
and leaky RelLU. The hyperbolic tangent function was expected to perform better than
leaky ReLU; however, the evaluation score of the former was higher than that of the latter.
The generated signals trained using the hyperbolic tangent activation function failed
mostly on transverse planes. Meanwhile, the FD scores of leaky ReLU were lower than
those of hyperbolic tangent by 0.6 and 46 on frontal and transverse planes, respectively.

The evaluation scores are shown in Table 10.
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Tanh Leaky RelLU
FD score MSE FD score MSE
Frontal Plane 4.086 0.01 3.429 0.01
Transverse Plane 59.249 0.076 13.757 0.042
All Planes 34.17 0.046 9.062 0.027

Table 10. Evaluation score of the two activation functions
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In our study, FD and MSE scores were used for the evaluation. A total of 180 records of
diagnostic data were evaluated in segments. The RR interval, QT interval, QRS duration,
and ST interval were selected for further investigation. The differences were calculated for
each segment. The results are shown in Table 11. The Bland-Altman plots are depicted in
Figures 21-26. The results showed that segments of the generated and reference signals

were similar.
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ARR interval AQT interval AQRS duration AST interval

Lead I 0.839 0.856 0.712 0.046
Lead III 0.708 045 0.168 0.059
Lead avR 0.904 0.585 0.337 0.068
Lead avL 0.855 0.666 0.469 0.051
Lead avF 0.688 0.384 0.027 0.052
V1 0.905 0.469 0.176 0.059
V2 0.73 0.553 0.276 0.049
V3 0.872 0.622 0.251 0.055
\Z 0.802 0.571 0.309 0.048
V5 0.682 0.523 0.311 0.047
V6 0.833 0.602 0.2888 0.049
Mean 0.801 0.571 0.302 0.053

Table 11. Calculated differences for each segment
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Figure 22. Bland-Altman plot of RR interval (limb lead) for 180 records of diagnosable

data. Results are in the range of +1.96 SD, representing the similarity between generated

and reference signals
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Figure 23. Bland-Altman plot of RR interval (chest lead) for 180 records of diagnosable

data. Results are in the range of +1.96 SD, representing the similarity between generated

and reference signals.
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Figure 24. Bland-Altman plot of QRS duration (limb lead) for 180 records of diagnosable
data. Results are in the range of +1.96 SD, representing the similarity between generated

and reference signals.
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Figure 25. Bland-Altman plot of QRS duration (chest lead) for 180 records of diagnosable

data. Results are in the range of +1.96 SD, representing the similarity between generated

and reference signals.
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Figure 27. Bland-Altman plot of the QT interval (chest lead) for 180 records of
diagnosable data. Results are in the range of +1.96 SD, representing the similarity

between generated and reference signals.
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Bland-Altman (ST interval Limb Leads)
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Figure 28. Bland-Altman plot of the ST interval (chest lead) for 180 records of
diagnosable data. Results are in the range of +1.96 SD, representing the similarity

between generated and reference signals.
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MSE measures the average squared difference between real-world (X) and generated

signals (Y) as follows:

MSE =3, (X; — Y;)? 4

FD is used to find the similarity between the curves of the generated and
corresponding real-world signals. If O_X=a_l,a_2,a_3,....a_X is the ordered points of real-
world signal curves and O_Y=b_1,b_2,b_3,...b_Y is the ordered points of the generated

signal curves, then the length of ||l|| can be calculated as follows:

Ul = max I(a;, b;). )
i=1,.n

Therefore, FD can be calculated as follows:

FD(X,Y) = min||l|| (6)

Thus far, the generated signals learned from two independent datasets and one
combined dataset were presented and compared with the reference 12-lead ECG signals.

Figure 20 depicts two sections of the proposed method: GAN training and evaluation.

72



The generated and reference ECG signals were plotted in an actual ECG paper to
compare and verify if they match. Finally, the evaluation scores of the three experiments
were compared. Evaluation scores of all three experiments are listed in Tables 12 and 13.

The lowest evaluation scores are shown in bold font.

In Experiment 1, the China dataset was used to train the model, and the PTB-XL
dataset was used to evaluate the optimized GAN model. From Tables 12 and 13, the
mean values of the FD and MSE scores were 9.062 and 0.027, respectively. For the limb
lead generated signals, the FD and MSE scores were lower, that is, 3.429 and 0.01,
respectively. By contrast, evaluation scores for the transverse plane were higher than
those of the frontal plane. In Experiment 2, the model was trained on the PTB dataset.
The mean FD and MSE scores were 8.124 and 0.027, respectively. The FD and MSE scores
for the frontal plane were lower than those of the transverse plane by 7 and 0.02,
respectively. The evaluation scores for the two models were similar. In Experiment 3, the
PTB-XL and China datasets were combined so that our model learns with more data. The
FD and MSE scores of Experiment 3 were 6.7 and 0.017, respectively, which was less than
the scores obtained in Experiments 1 and 2. In addition, the evaluation scores of the
frontal and transverse plane were lower compared to those of Experiments 1 and 2. The
results of Experiment 3 indicated that combining the PTB-XL and China datasets to

acquire more data improved the model evaluation scores.

Figure 21 depicts the generated 12-lead ECG signals and the corresponding real-world
12-lead ECG signals from Experiments 1, 2, and 3. In the presented ECG paper format,

one large box signal of P-Q-R-S-T segments followed the reference signals, and the
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negative-positive values for each P-Q-R-S-T peaks matched. The results of the
reconstructed 10 s ECG paper are depicted in Figure 21 (a); the sync of not only the R-
peak, but also the remaining peaks matched with the input lead I ECG signals. For
Experiment 2, the generated and reference 12-lead ECG signals are depicted in Figure 21
(c). Similar to Experiment 1, for generated signals, the sync between leads and P-Q-R-S-T
segments followed the reference signals. Finally, the generated signals from Experiment 3

are depicted in Figure 21 (e).

Figure 21 depicts the results of both high and low FD score samples. Figures 21 (a), (c),
and (e) illustrate samples with low FD and MSE scores, whereas Figure 21 (b), (d), and (f)
show samples with high FD and MSE scores. As mentioned in Table 12, although the
overall FD and MSE scores were low, a few samples depicted in Figure 21 had high FD

and MSE scores.
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Experiment 1 Experiment 2 Experiment 3

FD score MSE FD score MSE FD score MSE

(mV) (mV) (mV) (mV) (mV) (mV)

Lead II 4551 0.014 2.189 0.011 2.561 0.008
Lead III 4927 0.014 1.596 0.012 1974 0.008
Lead aVR 0.936 0.004 0.504 0.003 0.359 0.009
Lead aVL 1483 0.004 0.690 0.004 0.219 0.002
Lead aVF 5.249 0.014 16.460 0.042 2.272 0.008
V1 13.637 0.029 6.101 0.021 8.032 0.016
V2 10.847 0.058 10.837 0.050 9.382 0.029
V3 17.639 0.058 10.128 0.051 9.373 0.031
V4 15.265 0.046 12.581 0.043 7.929 0.024
V5 13.602 0.033 15931 0.034 12.153 0.025
V6 11.550 0.028 12.347 0.026 19453 0.030
Mean value 9.062 0.027 8.124 0.027 6.701 0.017

Table 12. FD and MSE scores for each electrode
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Experiment 1 Experiment 2 Experiment 3

FD score FD score FD score
MSE (mV) MSE (mV) MSE (mV)
(mV) (mV) (mV)
Frontal Plane 3429 0.010 4.288 0.0144 1477 0.007
Transverse Plane 13.757 0.042 11.321 0.038 11.054 0.026
All Planes 9.062 0.027 8.124 0.027 6.701 0.017

Table 13. FD and MSE scores for each plane
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Next, we present a novel method of generating more than one-beat 12-lead ECG signal
from lead L The lead II method of measuring ECG signals may be more efficient. However,
wearable devices such as smartwatches are attached to the arm; therefore, the
conversion of ECG signals from lead I is important. Minimizing the preprocessing
procedure allows the utilization of all raw data. Moreover, to generate more than one-
beat signal, the U-net generator and patch discriminator were used. The proposed
method showed excellent performance by following the P-Q-R-S-T pattern. As depicted
in Figure 21 (a), (c), and (e), the sync between signals matched. Low FD and MSE scores
were obtained because of combining the PTB-XL and China datasets. However, the
amplitude of generated signals was not equivalent to that of reference signals. As
mentioned previously, similar to images, ECG signals do not have absolute maximum and
minimum values, as they vary between patients. Additionally, since the PTB-XL and China
datasets had 18,885 and 10,646 patients, variations in patient data resulted in uneven
amplitude results. In Experiment 3, the overall FD and MSE scores were low, indicating

that the model performed better after being trained with combined data.

Figures 21 (b), (d), and (f) show samples of high FD and MSE scores. The FD scores of
lead V6 were 3222, 2669, and 2240. The MSE scores were 2.52, 2.08, and 1.74. This
indicates that the generated and reference signals do not correlate. However, in Figure
21 (b) and (d), the reference V6 signal shows baseline wander, causing high evaluation
scores and noise in lead 1. As shown in Figure 21 (f), artifacts in lead V5 caused high
evaluation scores. Therefore, signal generation with baseline wander and artifacts was

limited.
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Additionally, 180 records of abnormal cases were generated and evaluated. The
evaluation scores of abnormal cases are listed in Tables 14 and 15. The mean FD and
MSE scores were 23.645 and 0.065, respectively. The evaluation scores were higher than
previous results. However, the evaluation scores of limb leads was lower by 30 mV

compared to chest leads.
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Lead FD score (mV) MSE (mV)

Lead II 9.796 0.032
Lead III 11.391 0.034
Lead aVR 1.689 0.009
Lead aVL 2.248 0.008
Lead aVF 10.544 0.035
V1 13.483 0.053
V2 57.493 0.143
V3 53.925 0.156
V4 45.807 0.123
V5 26.472 0.067
V6 27.248 0.054
Mean value 23.645 0.065

Table 14. FD and MSE scores for abnormal cases in each electrode
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Plane FD score (mV) MSE (mV)

All Plane 23.645 0.065
Frontal Plane 7.134 0.024
Transverse Plane 37.405 0.099

Table 15. FD and MSE scores for abnormal cases in each plane
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The generated abnormal signals were annotated by a cardiologist with 20+ years of
experience. The abnormal signals learned in this study were left bundle branch block
(LBBB), right bundle branch block (RBBB), left ventricular hypertrophy (LVH), right
ventricular hypertrophy (RVH), myocardial infarction (MI), and Wolff-Parkinson-White
syndrome (WPW). The cardiologist provided the diagnosis results by observing all 12-
lead signals represented in ECG paper format. Table 16 lists whether the cardiologist was
able to reach diagnosis according to the generated signals. The generated signals of LVH,
RBBB, and LBBB showed high diagnosability, represented by the percentage of
diagnosable data. Over 85% of the generated signals could be used to diagnose diseases.
However, WPW, RVH, and MI showed low diagnosability, indicating several limitations for

diagnosing abnormal diseases.
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Diagnosable Fair Undiagnosable All Performance
LVH 52 2 1 55 95%
RBBB 41 2 1 44 89%
LBBB 25 4 0 29 86%
WPW 12 3 2 17 63%
RVH 3 4 3 10 20%
MI 0 2 7 9 0%

Table 16. Performance on abnormal cases
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From the results, first, although the diagnosability of LVH, LBBB, and RBBB were high, a
few of the generated signals resulted in uneven amplitude beat by beat. Second, the
strain patterns were not shown properly as reference signals. Third, the evaluation scores
of chest leads were low. Therefore, although inferior wall defects were diagnosed,
diagnosis of anterior wall defects was difficult, resulting in low performance in generating
MI signals. Finally, while generating WPW signals, most signals showed delta patterns;
however, some were directed to opposite positions of the heart. Lack of abnormal data
mainly caused the above limitations. Therefore, further studies should be performed with

more abnormal data.

Table 17 compares the results for our method with those of related works on ECG
synthesis by GANs. All previous studies used lead II as input; however, it is not suitable
for wearable devices, such as smartwatches. Generated leads were limited to same as
input or only chest leads. Additionally, SynSigGAN, Wulan et al, and Leea et al. used
denoising methods that distorted raw signals. Although denoising, data augmentation,
and R-peak alignment methods may be effective in deep learning, they are not
applicable in real-world generation. Moreover, previous methods had limitations in
generation length. Wulan et al. generated 2.5s ECG signals, while Lee et al's generation
method was limited to 1s generation due to the use of R-peak alignment method in
preprocessing. Conversely, our method can generate more than 10s ECG signals. Finally,
the evaluation scores vary due to different evaluation methods. The FD score for the
SynSigGAN model was 0.936 lower than that of the proposed method. However, FD

scores between reference and generated signals were not calculated for the two methods.
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Generat
Input  Generated

Method Preprocess Method ion Result
lead Lead
length
median
SynSigG R-R FD: 0.936 mV
lead I Lead I Wavelet denoising
AN interval MAE: 0.218 mV
time
Woulan
I leadI Lead I Noise reduction 2.5 GAN train score: 89.07%
eta
Down sampling Corr: 0.86
Lee et
| lead I V1~V6 R-peak alignment 1s Amp: 0.21 mV
a
Data augmentation SSIM: 0.21 mV
Propose FD: 6.701 mV
d LeadI 12 Lead None 10 s
MSE: 0.017 mV
method

Table 17. Comparison between the proposed method and other studies related to ECG

synthesis based on GANs
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Finally, in response to the demand for accurate diagnoses, the Internet of Medical Things
(IoMT) technologies are being developed. Furthermore, smartwatches are closely related
to IoMT, as they enable the tracking and monitoring of biosignals, including ECG signals.
Using our proposed method, more detailed ECG signals can be obtained from IoMT

devices, such as smartwatches.

In this study, a novel method of lead conversion based on lead I was developed.
Experimental results showed that the proposed method could generate 12-lead ECGs
from lead I signals with low FD and MSE scores. Prior studies, such as [32] and [33], used
preprocessing methods for ECG signal segmentation by beats or by R peaks, thereby
distorting the morphology of ECG signals and being unable to generate the actual value
corresponding to the reference signal. In contrast, our proposed method for ECG
generation showed superior performance without preprocessing raw signals. Additionally,
A comparison of ECG papers demonstrated that the generated signal waveforms of P-Q-
R-S-T, by our method, follows the reference signals. Furthermore, the sync between leads
matches. Importantly, this method can be applied to wearable devices that measure ECG

signals based on a single lead, thus contributing to the growth of IoMT.
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Conclusion

In this study, several DL-based digital healthcare models were developed using
cardiovascular biosignal data. In the first chapter, we developed a DL model for AF
detection in patients (binary classification into AF and non-AF patients) using ambulatory
(Holter) ECG data obtained from three datasets. Additionally, we verified ECG data
dependency for AF detection using ResNet architectures. Specifically, owing to the
characteristics of medical data, such as data imbalance, we found that if a database has
AF events far less than normal rhythms, which is common in biosignal databases, the
trained model can be biased, resulting in reduction in performance when tested on
external datasets. Then, in the next chapter, we developed a DL model, by combining
ResNet and LSTM architectures, for real-time indirect continuous arterial BP
measurements using ECG and PPG waveforms. We verified that our proposed method
overcomes the limitations of rule-based methods in the clinical field. Finally, in the third
chapter, using a GAN model, we were able to convert single-lead ECGs to 12-lead ECGs,
thus obtaining more detailed readings of heart signals using wearable devices, such as
smartwatches, which are less complex than devices used in hospitals. Moreover, the
biosignals generated by this method could be used to monitor the heart condition and
diagnose diseases in most cases. Nevertheless, the lack of abnormal data mainly
imposed limitations on the diagnosis of abnormal diseases. Therefore, to overcome this
problem, future studies should use more abnormal data. Our results highlight the
untapped potential of DL approaches in enhancing the growth of the IoMT industry and

digital healthcare applications.
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Abstract

Biosignals represent an important type of digital healthcare data. Although these
signals have to be monitored continually in real time for long periods to provide
advanced diagnostic and therapeutic capabilities for patients, healthcare workers cannot
always perform this task efficiently. Additionally, such data are usually atypical, non-
standardized, irregular, and extremely vulnerable to noise. Thus, there is an urgent need
for an effective and comprehensive automated system that can collect and analyze such
data in real time. Using biosignal data, this study develops and applies several deep

learning (DL) models for digital healthcare applications.

First, to overcome the problem of data dependency prevalent in the medical field due
to the differences in analog to digital (AD) resolution and sampling rate of the measuring
equipment, we used meta-analysis to integrate data from various databases. Specifically,
we collected ECG data from three open databases, and used different ResNet
architectures for AF detection in each database. Our results showed that the accuracy
was lowered when the trained models were evaluated on datasets other than the one
containing the training dataset, thus confirming dependency on the training data. it is
necessary to validate the DL-based AF detection algorithm using various external

databases to overcome the problem of data dependency.

Next, by combining ResNet and LSTM architectures, we developed a DL model for real-
time indirect continuous arterial BP measurement using ECG and PPG waveforms. We
verified that our proposed method realizes continuous blood pressure estimation in

compliance with international standards. In addition, it can estimate BP for AF patients.
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Finally, we used a GAN model to convert single-lead ECGs to 12-lead ECGs, thus
obtaining more detailed readings of heart signals using wearable and less complex
devices, such as smartwatches. Moreover, the multi-electrode ECGs generated by this
method could be used to monitor the heart condition and diagnose diseases in the
clinical field. Thus, the proposed method can be integrated in IoMT devices and digital

healthcare applications.

Through several digital healthcare studies using biosignals, we confirmed that DL-

based applications can be effectively used in clinical conditions.
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