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Abstract 

Counseling patients in weighing their individual prognosis and selecting appropriate 

treatment strategies are essential aspect of care for patients with cancer. Although the common 

statistical models familiar to clinicians can determine prognostic factors and evaluate the 

relative risk of cases with specific prognostic factors, it is difficult to predict the individual 

prognosis of a patient using it. Recently, the medical field has experienced increased attempts 

to develop a clinical decision support system (CDSS) using artificial intelligence. However, 

developing personalized prognostic prediction models with various, complex information and

ensuring its availability to other institutions with different patient groups and characteristics, 

remain challenges yet to be overcome. In this thesis, a machine learning-based two-stage 

model that can recommend initial treatment option and predict overall survival in patients 

with hepatocellular carcinoma (HCC) was developed. In particular, this model was verified 

using external datasets obtained from eight medical centers in South Korea, and the technical 

issues, challenges, and strategies for multi-institutional usability were discussed.

For the first phase of this thesis, the model to recommend one of six treatments used for 

the initial treatment of HCC using 20 pretreatment key variables was developed and validated 

employing multi-center datasets. The recommendation was made by considering the results 

of ensemble voting classifier that was created using five machine learning classifiers that 

offered the best performance after testing several models. In addition, the performance of 

individual training with the dataset of each institution was compared with those of external 

validation of the model trained with the internal dataset. Although individual training revealed 

better performance, results of external validation of the model exhibited acceptable 

performance with the setting of providing a second treatment option. Combining these 

experimental results, it was suggested that providing a second treatment option along with the 

first, with its level of confidence, were found to be effective in extending this model to multi-

centers with different preferences and policies.

For the second phase of this thesis, a model for survival prediction following initial 
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treatment was developed. Overall survival for each patient was predicted employing a random 

survival forest model using initial treatment information in addition to 20 key variables used 

in the model for treatment recommendation. Survival prediction from individual training for 

each center exhibited similar or worse performance than those obtained from external 

validation in contrast to the results of the model for treatment recommendation. Furthermore, 

an experiment was performed to stratify the risk of each treatment by simulating how the 

predicted survival changes according to the results of treatment recommendation in the first 

stage. 

In the third phase of this thesis, specific scenarios demonstrating the applicability of 

this model in real clinical setting were presented. First, the possibility of employing this model 

as an alternative to a current staging system was investigated. The results of recommendation 

of this model and the Barcelona Clinic Liver Cancer (BCLC) staging system in group of 

BCLC C stage were compared. The agreement between the treatment recommended in this 

model and the treatment actually received was higher than the treatment recommended in the 

BCLC stage. Second, results of simulation for a case employing external datasets using two 

different models trained with dataset of two different centers were demonstrated. The result 

showed that for even patients with the same conditions the model can recommend different 

treatments and show different survival by reflecting the characteristics based on the dataset of 

each institution. These usage scenarios show examples of how this model can be extended 

and used in real clinical situations.

In conclusion, a machine learning-based two-stage model with 20 clinical variables to 

recommend appropriate initial treatment and sequentially predict overall survival for patients 

with HCC was developed. Furthermore, various experiments were conducted to apply this 

model to multiple centers in real clinical environment, and the results obtained were analyzed.

This model is expected to provide practical utility to physicians and institutions with little 

experience in actual clinical settings.
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1. Introduction

1.1. Motivation

Cancer is a group of diseases characterized by the uncontrolled growth and spread of 

abnormal cells [1]. In South Korea, cancer is the most common cause of death, accounting for 

nearly one of every four deaths [2]. Counseling patients considering their individual 

characteristics and selecting appropriate treatment strategies form a crucial part of the care for 

patients with cancer. The general statistical model is familiar to the clinician. However, 

although a statistical model can estimate the relative risk, it is difficult to predict the prognosis 

for an individual patient. Moreover, the quantity and quality of clinical data has been rapidly

expanding, including electronic health records, enormous quantity of information from 

diverse medical images and examinations, genetic information, disease registries, and patient 

surveys. However, big data and digitalized information do not automatically lead to better 

patient care. 

A clinical decision support system (CDSS) is concerned with improving healthcare 

delivery via enhancing medical decisions with targeted clinical knowledge, patient 

information, and other health information [3]. CDSS gathers and represents knowledge in a 

manner that facilitates simulations of human reasoning using computers to generate advice 

[4]. Therefore, high-quality CDSS is essential to exploit the full benefits of huge amounts of 

information. Recently, the biomedical field has witnessed increased use of machine learning, 

particularly in image diagnosis. However, development and evaluation for individualized 

prediction models with various, complex information using these methods remains a 

challenging problem. Despite extensive research regarding the use of machine learning and 

deep learning in medical fields has been published, several problems are yet to be solved. This 

thesis demonstrates the development of a model for CDSS and technical issues and challenges 
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for multi-center extension.

Treatments for cancer patients have characteristics that continuously change with time. 

The growth of massive genetic and clinical databases, along with computing systems to 

exploit them result in the acceleration of the speed of treatment advances while shortening the 

cycle time for changes to treatment guidelines in oncology. In addition, these information 

management challenges have been occurring in a practice environment wherein the time 

available for tracking and accessing relevant information is minimal. In particular, in the case 

of hepatocellular carcinoma (HCC), rather than uniform standard treatment considering the 

stage, various treatments are used according to the various residual liver functions of the 

patient and whether the treatment perform well at each institution as well as the stage. In such 

a scenario, developing a model and ensuring its availability to multiple centers was the 

research motivation for this study.

1.2. Contributions

The main contributions of this thesis are summarized as follows. First, a machine 

learning-based model was developed for initial treatment recommendation in patients with 

HCC. In particular, the focus was on the modification and application of this model for use in 

a multi-center setting. Accuracy was increased by employing an ensemble voting machine 

compared with previous cascaded random forest model for the internal dataset. In addition, 

providing a second treatment option along with the first, with its level of confidence, were 

found to be effective in extending this model to multi-centers with different preferences and 

policies. Second, a model was developed for survival prediction following the initial treatment 

recommended by the model in the first phase. The two-stage model was simulated, and 

consequently the risk was stratified via predicting the survival considering the results of 

treatment recommendation. Third, we demonstrated several scenarios of this model in real 
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clinical situations. The feasibility of this model functioning as an alternative to the current 

staging system was described as a first scenario. Furthermore, we simulated certain cases 

using two different models with same structure but separately trained with different dataset 

from two centers. The possible expansion of this model may aid both physicians and patients 

in real clinical setting.

1.3. Organization

The remainder of the thesis presents each of the above-listed contributions in further 

detail. Chapter 2 presents a brief overview of the background of this thesis. Chapter 3 

describes the characteristics of internal dataset and a previously proposed CDSS for treatment 

recommendation and survival prediction after initial treatment in patients with HCC. In the 

previous study with dataset of a single center, cascaded random forest model was employed 

for treatment recommendation and random survival forest model for survival prediction. In 

addition, the process of feature selection of 20 pretreatment key variables as a model input 

and performance of previous models was described. Finally, data collection and characteristics 

of external datasets obtained from eight institutions in South Korea have been presented at the 

end of the chapter.

Chapter 4 presents in detail the various experiments performed and results obtained on 

the model for treatment recommendation. The ensemble voting machine has been applied and 

its performance was compared with a previous cascaded model. Various normalization and 

oversampling methods were employed to improve the model performance. Further, the results 

of individual training with dataset of each center were compared with those of external 

validation. The option for a second treatment in addition to first was also investigated for the 

application of this model to multi-center setting. Lastly, the model calibration and the results 
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have been described in this chapter.

Chapter 5 explains the experiments performed and results obtained on the model for 

survival prediction. Different training modes for random survival forest model was evaluated 

for internal dataset. Further, using the modified model, the results of individual training with 

dataset of each center and those of external validation were compared. Furthermore, the 

simulation results of the proposed two-stage model and risk stratification via predicting the 

survival considering the results of treatment recommendation have been described. 

In the Chapter 6, several usage scenarios of CDSS have been discussed. The results of 

recommendation between the proposed model and the Barcelona Clinic Liver Cancer (BCLC) 

staging system in patient group of BCLC C stage were compared and the possibilities of 

employing this model as an alternative of the current staging system were demonstrated. In 

addition, the concept of digital twin was presented with simulation of a case of one patient

using two different models trained with datasets from two centers, and the expandability of 

this proposed model in real clinical setting has been described.

Finally, Chapter 7 presents a discussion of the limitations and challenges with regard to 

the proposed CDSS and a conclusion. Various issues and possible solutions focusing on the 

model deployment have also been described and consequently, future research topics, required 

for these issues and solutions have been presented.
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2. Background

This chapter presents a brief overview of the background of this thesis. In Section 2.1, 

the basic information related to machine learning as well as issues and challenges associated 

with machine learning-based models on biomedical datasets have been described. In Section 

2.2, various machine learning algorithms for multi-class classification have been presented, 

which were later employed in the model described in Chapter 4. In Section 2.3, a brief 

introduction of machine learning methods for time-to-event prediction has been discussed, 

which were used in the model discussed in Chapter 5. Finally, Section 2.4 presents commonly 

used metrics for evaluating performance of multi-class classification and time-to-event 

prediction.

2.1. Basic information on machine learning

2.1.1. Machine learning

According to Arthur Samuel, machine learning is defined as the field of study that 

enables computers to learn without being explicitly programmed [5]. Machine learning is used 

to teach machines the manner in which to handle the data more efficiently. With the abundance 

of datasets available, the demand for machine learning has increased, and many industries 

have applied machine learning to extract relevant data. Many studies focusing on ways to 

make machines learn by themselves without being explicitly programmed have been 

conducted. In addition, many mathematicians and programmers have applied several 

approaches to determine the solution of problems that contain huge data sets. Figure 2.1 shows 

commonly used algorithms in machine learning. Machine learning relies on different 

algorithms to solve data problems, and the type of algorithm employed depends on the type 

of problem to be solved, number of variables, and type of model best suited for the purpose
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[6].

Figure 2.1. Commonly used algorithms in machine learning

2.1.2. Issues and challenges with biomedical dataset

In a majority–minority classification problem, class imbalance in the datasets can 

dramatically skew the performance of classifiers, which results in the introduction of a 

prediction bias for the majority class [7]. A dataset is imbalanced if the classification 

categories are not approximately equally represented, which is very common in case of a 

biomedical dataset. Often real-world datasets are predominately composed of “normal” 

examples with “abnormal” examples comprising a small portion. In addition, as a common 

occurrence, the cost of misclassifying an abnormal example as a normal example is often 

much higher than the cost of the reverse error. Moreover, when working with big data, the 

mitigation of class imbalance poses an even greater challenge because of the varied and 

complex structure of the relatively much larger datasets. Consequently, attempts have been 

made to handle imbalanced datasets in domains such as fraudulent telephone calls, 

telecommunications management, text classification, and detection of oil spills in satellite 

images [8-13]. Leevy et al. provided a large survey of published studies focusing on high-
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class imbalance (i.e., a majority-to-minority class ratio between 100:1 and 10,000:1) in big 

data to assess and address the adverse effects owing to class imbalance [7]. 

Their study discussed two techniques: data-level and algorithm-level methods. The 

data-level approach involves sampling and feature selection techniques. Further, sampling 

techniques consist of over-sampling and under-sampling solutions, wherein in case of the 

over-sampling process, instances from the minority class are added via replication to the given

dataset, with the replication being done either randomly or using an intelligent algorithm. In 

contrast, during the under-sampling process, instances from the majority class are removed 

from the given dataset, with the removal following a random pattern. Chawla et al. proposed 

the synthetic minority over-sampling technique (SMOTE), wherein the over-sampling of 

minority class and under-sampling of majority class were combined, with the former 

involving the creation of synthetic minority class examples. It improved the classifier 

performance in receiver operating characteristics (ROC) space than that in case of only under-

sampling the majority class [14]. However, in the Leevy et al.’s review, random over-sampling 

(ROS) was considered to exhibit a better classification accuracy than random under-sampling 

or SMOTE in most studies. 

Feature selection methods may also aid in the selection of the most influential features 

that can yield unique knowledge for inter-class discrimination [15, 16]. Mladenic and 

Grobelnik et al. utilized a feature-subset selection approach developed for a Naive Bayes 

classifier on imbalanced text data from multiple domains [10]. They investigated 11 different 

feature scoring measures and determined that the odds ratio produced the best results. The 

authors also concluded that considering domain and algorithm characteristics significantly 

improves classification results. Zheng et al. also investigated feature selection for text 

categorization with imbalanced data [17]. Their approach selected the positive features and 

negative features separately using feature selection techniques including Information Gain, 
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Chi Square, correlation coefficient, and odds ratio, and then explicitly combined. Further, they 

presented variations of the odds ratio and Information Gain metrics to especially address class 

imbalance. Their study used the Naïve Bayes and Regularized Logistic Regression as 

classifiers, and the proposed approach yielded good results. Yin et al. demonstrated that both 

decomposition-based and Hellinger’s distance-based methods can outperform existing 

feature-selection methods for imbalanced data [18]. The higher the distance (i.e., lower 

affinity) value, the better the corresponding feature. Thus, the Hellinger’s distance can be used 

to measure the prediction power of features to classify instances. 

The algorithm-level approach includes cost-sensitive and hybrid/ensemble techniques. 

Cost-sensitive techniques are based on the general principal of assigning more weight to an 

instance or learner in the event of a misclassification. For example, a false negative prediction 

may be assigned a higher cost compared to a false positive prediction, given the 

hybrid/ensemble techniques are the class of interest. Further, cost-sensitive techniques include 

a fuzzy rule-based classification approach coupled with an online learner scheme. In contrast, 

the hybrid/ensemble techniques include a Bayesian optimization algorithm that maximizes 

Matthew’s correlation coefficient by learning optimal weights for the positive and negative 

classes [19], coupled with an approach that combines ROS and support vector machines. In 

addition, ensemble methods can also be used as cost-sensitive methods, with the classification 

outcome being certain combinations of multiple classifiers built on the dataset; bagging and 

boosting are two common types of ensemble learners.

2.2. Multi-class classification

Supervised multiclass classification algorithms aim at assigning a class label for each 

input example. For a particular training data set of the form (�� , ��), where �� ∈ ℝ� is the �th 
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example and �� ∈ {1,… , �} is the �th class label, the aim is to determine a learning model 

ℍ  such that ℍ(��) = ��  for new unseen examples. Aly et al. [20] presented the different 

approaches employed to solve the problem of multi-class classification. The first approach 

relied on extending binary classification problems to address the multiclass case directly, 

through neural networks, decision trees, support vector machines, naive bayes, and k-nearest 

neighbors. The second approach decomposes the problem into several binary classification 

tasks, with several methods employed for this decomposition: one-versus-all, all-versus-all, 

error-correcting output coding, and generalized coding. Finally, the third one involved 

arranging the classes in a tree (typically a binary tree) and utilizing several binary classifiers 

at the nodes of the tree till a leaf node is reached. This section presents the algorithms in the 

first approach that are commonly used for multi-class classification.

Neural Networks. Multi-layer feedforward neural networks provide a natural 

extension to the multiclass problem [21]. Rather than having one neuron in the output layer, 

with binary output, � binary neurons can be acquired. The output codeword corresponding to 

each class can be chosen as one-per-class coding or distributed output coding. In case of one-

per-class coding, each output neuron is designated the task of identifying a particular class, 

whose output code should be 1 at the particular neuron and 0 for the others. Therefore, � =

� neurons are required in the output layer, where � denotes the number of classes. Further, 

when testing an unknown example, the neuron providing the maximum output is considered 

the class label for that example. For instance, for a four-class problem the output codes can be 

1000, 0100, 0010, and 0001. In contrast, in case of distributed output coding, each class is 

assigned a unique binary codeword from 0  to 2� – 1 , where �  is the number of output 

neurons. Consequently, when testing an unknown example, the output codeword is compared 

to the codewords for the � classes, and the nearest codeword, according to certain distance 

measure, is considered the winning class. Usually, the Hamming distance is used, which is the 
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number of different bits between the two codewords. For instance, for a four-class problem, 

and using �  = 5-bit codewords, the coding can be as 00000, 00111, 11001, and 11110. 

Moreover, the hamming distance between each pair of classes is equal to 3, that is, each pair 

of codes differ in three bits. For an unknown example, if the codeword is 11101, its distance 

is computed using the four codewords shown above. Furthermore, the nearest codeword 

involves class 3 with a distance of 1, such that the class label assigned to that example is class 

3.

Decision Trees. Decision trees are a powerful classification technique. Two widely 

known algorithms for building decision trees are Classification and Regression Trees [22] and 

ID3/C4.5 [23]. The tree tries to infer a split of the training data based on the values of the 

available features to produce a good generalization. The split at each node is based on the 

feature that gives the maximum information gain. Each leaf node corresponds to a class label. 

A new example is classified by following a path from the root node to a leaf node, where at 

each node a test is performed on some feature of that example. The leaf node reached is

considered the class label for that example. The algorithm can naturally handle binary or 

multiclass classification problems. The leaf nodes can refer to either of the �  classes 

concerned.

Random forests are a combination of tree predictors such that each tree depends on the 

values of a random vector sampled independently and with the same distribution for all trees 

in the forest [32]. The generalization error for forests converges to a limit when the number 

of trees in the forest increases to a large value, and it depends on the strength of the individual 

trees in the forest and the correlation between them. A random selection of features is used to 

split each node, which yields error rates that are comparable to Adaboost [33], but more robust 

with respect to noise. Further, internal estimates monitor error, strength, and correlation, 

which are used to indicate the response to increasing the number of features used in the 
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splitting. In addition, they are used to measure variable importance. Tree boosting is a highly 

effective and widely used machine learning method [34]. Among the machine learning 

methods used in practice, gradient tree boosting [35] a technique that demonstrates favorable 

outcomes in many applications. Tree boosting has been proven to yield state-of-the-art results 

on many standard classification benchmarks. XGBoost is a scalable end-to-end tree boosting 

system, which has been used widely by data scientists for the purpose of achieving state-of-

the-art results in case of many machine learning challenges. It was proposed for a novel 

sparsity-aware algorithm for sparse data and weighted quantile sketch to realize approximate 

tree learning.

�-Nearest Neighbors. �-nearest neighbors (kNN) [24] is considered among the oldest 

non-parametric classification algorithms. To classify an unknown example, the distance 

(using certain distance measure e.g., Euclidean) from that example to every other training 

example is measured. Consequently, the �  smallest distances are identified, and the most 

represented class in these �  classes is considered the output class label. The value of �  is 

normally determined using a validation set or using cross-validation.

Naive Bayes. Naive Bayes [25] is a successful classifier based upon the principle of 

maximum a posteriori (MAP). For a particular problem with � classes {�� , . . . , ��} having 

prior probabilities �(��), . . . , �(��), the class label � can be assigned to an unknown example 

with features � = (��, . . . , ��)  such that � = ��������(� = � ∥ ��, . . . , ��) . In other 

words, the class with the maximum a posterior probability for the observed data is chosen. 

This aposterior probability can be formulated using Bayes theorem as follows: �(� = � ∥

�_1, . . . , �_�) =
�(���)�(��,...,��∥���)

�(��,...,��)
. As the denominator is the same for all classes, it can be 

excluded from the comparison. Now, the class conditional probabilities of the features needs 

to be computed for the available classes. However, considering the dependencies between 

features, this can be a challenging task. The naive Bayes approach assumes class conditional 



12

independence, that is, ��, . . . , �� are independent for the particular class. Consequently, the 

numerator is simplified to �(� = �)�(�� ∥ � = �) . . . �(�� ∥ � = �) . Subsequently, the 

class � that maximizes this value over all the classes � = 1, . . . , �, is chosen. As evident, this 

approach can be naturally extended to the case involving more than two classes and has been 

shown to perform well despite the underlying simplifying assumption of conditional 

independence.

Support Vector Machines. Support vector machines (SVM) are among the most robust 

and successful classification algorithms [26, 27], and are based upon the idea of maximizing 

the margin; that is, maximizing the minimum distance from the separating hyperplane to the 

nearest example. The basic SVM supports only binary classification, but extensions [28-30]

with additional parameters and constraints added to the optimization problem have been 

proposed to handle the separation of the different classes, thereby rendering it suitable for 

multiclass classification. However, the formulation of [30] can result in a large optimization 

problem, which may be impractical for a large number of classes. In contrast, Crammer et al. 

[29] reported a better formulation with a more efficient implementation.

The decision function of SVM is an optimal hyperplane that serves to separate 

observations belonging to one class from another considering patterns of information 

regarding those observations called features [31]. Subsequently, the hyperplane can be used 

to determine the most probable label for unseen data. However, the features used to infer the 

hyperplane are not typically raw data; rather, they are most often derivative data resulting 

from interpolation during the feature selection stage. Moreover, the features are further 

referenced by coordinates based on their relationships to each other and form the support 

vectors. Similar to other forms of machine learning, working with SVM involves balancing 

two complementary aims: (1) maximizing the percentage of correct labels assigned to new 

examples by the classifier (i.e., optimizing its accuracy) and (2) ensuring that the classifier is 
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generalizable to new data (i.e., optimizing its reproducibility). While the former is bound by 

the informativeness of the features used (i.e., feature importance), the latter is bound by the 

number of unique examples used to train the model.

2.3. Time-to-event prediction

There are several models that explain the time-to-event prediction as a classification 

problem [32]. In general, it is referred to as survival analysis, although survival analysis in a 

narrow sense specifically deals with survival versus death [33]. The outputs of survival 

prediction models vary because the modeling methods are diverse. However, the outputs can 

be categorized into two large types: time-independent and time-dependent. The time-

independent model generates a single value as the output for each patient, regardless of the 

follow-up time. In contrast, the time-dependent model prediction model calculates the output 

value separately for each follow-up time for each patient. Therefore, one patient can have 

multiple model output values, one for each follow-up time. Furthermore, it is possible to 

convert one type of model output to the other under certain circumstances. The time-

independent model outputs can be converted into time-dependent results. For example, the 

survival probability at time �, �(�, �), can be calculated from the log-risk scores if the baseline 

survival probability at time �  is available. The other way round, multiple time-dependent 

model outputs per patient may be reduced to a single time-independent value for analytical 

purposes.

In this section, recent machine learning algorithms of time-independent and time-

dependent models were introduced, including the random survival forest, which is used in this 

thesis for survival prediction and was thus primarily focused upon. Certain examples of time-

independent model are prediction models such as DeepSurv that use the log-risk score 
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estimated by the Cox proportional hazards model denoted as ∑ ����
�
���  , and risk scores 

created using the rounded integer values of the regression coefficients (� ) divided by the 

reference value (generally, the smallest � in the regression model). Random survival forest 

and Nnet-survival model fall under the gambit of time-independent models. Random survival 

forest, estimates the cumulative hazard function at time �, denoted as Λ(�, �), while Nnet-

survival provides the predicted S(�, �) at multiple specified time points as the model output.

DeepSurv. Katzman et al. proposed a modern Cox proportional hazards deep neural 

network, henceforth referred to as DeepSurv, which is a deep learning model that uses the log-

risk function of the Cox proportional hazards model as the final output function [34].

DeepSurv is a deep feed-forward neural network that predicts the effects of a patient’s 

covariates on their hazard rate parameterized by the weights of the network �. The baseline 

data of the patient �, is used as the input to the network. The hidden layers of the network 

comprise a fully connected layer of nodes, followed by a dropout layer. The output of the 

network ℎ��(�) is a single node with a linear activation which estimates the log-risk function 

in the Cox model.

�(�|�) = ��(�) ⋅ �
�(�)

(2. 1)

The network was trained by setting the objective function to be the average negative 

log partial likelihood of (2.2) with regularization.

��(�) = �
exp(ℎ��(��))

∑ exp(ℎ������)�∈ℜ(��)�:����
(2. 2)

where ����  is the number of patients with an observable event and �  is the ℓ�

regularization parameter. Further, the authors used gradient descent optimization to determine 

the weights of the network which minimize (2.3).
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ℓ(�) ∶= −
1

����
� (

�:����

ℎ��(��) − ��� � exp �ℎ������� + � ⋅ ��‖�
�

�∈ℜ(��)
(2. 3)

Nnet-survival. Gensheimer et al. described Nnet-survival, a discrete-time survival 

model that is theoretically justified, naturally deals with non-proportional hazards, and can be 

trained rapidly by mini-batch gradient descent. Their proposed model uses naturally 

incorporated time-varying baseline hazard rate and non-proportional hazards provided each 

time interval output node is fully connected to the neurons of the last hidden layer. Further, a 

loss function was used, which is the negative of the log likelihood function of a statistical 

survival model.

������
�� + � ���� − ��

��

��

������

��

���
(2. 4)

Random survival forest. Ishwaran et al. introduced the random survival forests, an 

ensemble tree method for analysis of right-censored survival data, which is an extension of 

random forests to right-censored survival data [35, 36]. A high-level description of the 

algorithm is as follows:

1. B bootstrap samples are drawn from the original data. Each bootstrap sample excludes 

on average 37% of the data, referred to as out-of-bag data (OOB data).

2. A survival tree for each bootstrap sample is grown. Thereafter, at each node of the tree, 

� candidate variables are selected randomly. Subsequently, the node is split using the 

candidate variable that maximizes survival difference between daughter nodes.

3. The tree is grown to full size under the constraint that a terminal node should have no 

less than �� > 0 unique deaths.

4. A cumulative hazard function (CHF) for each tree is calculated, and subsequently the 

average is estimated to obtain the ensemble CHF.
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5. Using OOB data, the prediction error for the ensemble CHF is calculated.

6. The central elements to the random survival forest algorithm involve growing a survival 

tree and constructing the ensemble CHF. A good split for a node maximizes survival 

difference between daughters, which causes the tree to push dissimilar cases apart. 

Eventually, with increase in the number of nodes and separation of dissimilar cases, each 

node in the tree becomes homogeneous and is populated by cases with similar survival. 

Further, the survival tree eventually reaches a saturation point when no new daughters 

can be formed because of the criterion that each node must contain a minimum of �� >

0 unique deaths. Thus, the most extreme nodes in a saturated tree are called terminal 

nodes. ���,� , ��,��,… , ���(�),� , ��(�),��  are the survival times and the 0–1 censoring 

information for individuals (cases) in a terminal node ℎ ∈ �. ��,� and ��,� are defined as 

the number of deaths and individuals at risk at time ��,� . Thus, the CHF estimate for ℎ is 

the Nelson–Aalen estimator.

���(�) = �
��,�
��,�

��,���
(2. 5)

Each case � has a �-dimensional covariate �� . The CHF for � is the Nelson–Aalen estimator 

for ��’s terminal node:

� (�|��) = ���(�), �� �� ∈ ℎ (2. 6)

The CHF (2.6) is derived from a single tree. However, to compute an ensemble CHF, both an 

OOB and bootstrap over B survival trees estimate are required. Thus, ��,� = 1 is defined 

provided � is an OOB case for � ; otherwise, ��,� = 0. (2.7) is an average over bootstrap 

samples wherein � is OOB.

��
∗∗ (�|��) =

∑ ��,���
∗ (�|��)

�
���

∑ ��,�
�
���

, �� �� ∈ ℎ (2. 7)

The bootstrap ensemble CHF for �, where all survival trees are used and not just those where 
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� is OOB, is expressed in (2.8). Thus, Random survival forest uses both (2.7) and (2.8) to 

define a predicted outcome.

��
∗ (�|��) =

1

�
���

∗ (�|��)

�

���

(2. 8)

Under general conditions, conservation of events implies that the sum of the estimated CHF 

over observed time (both censored and uncensored) equals the total number of deaths. This is 

applicable to a wide collection of estimators, including the Nelson–Aalen estimator. Thus, 

∑ ������,��
�(�)
��� = ∑ ��,�

�(�)
��� for each terminal node ℎ ∈ �. In other words, the total number 

of deaths is conserved within ℎ.

2.4. Evaluation metrics

2.4.1. Multi-class classification

Following metrics are the most common and basic measures for classification problems.

ㆍ Accuracy: This is the most common and simplest measure for evaluating a classifier. It 

is simply defined as the degree of right predictions of a model.

�������� (�, ��) =
�

��������
∑ 1 (��� = ��)
����������

���

ㆍ Precision: Precision, also referred to as positive predictive value, is the number of true 

positive results divided by the number of all positive results, including those not identified 

correctly.

��������� =
��

�� + ��

ㆍ Recall: Recall, also referred to as sensitivity, is the number of true positive results divided 
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by the number of all samples that should have been identified as positive.

������ =
��

�� + ��

ㆍ F-score (�� score): This is the harmonic mean of precision and recall of the test. The 

highest possible value of an F-score is 1.0, which indicates perfect precision and recall, 

while the lowest possible value is 0 in case either the precision or the recall is zero.

�� =
2

�������� + �����������
= 2 ⋅

��������� ⋅ ������

��������� + ������
=

��

�� +
1
2 (�� + ��)

ㆍ Cohen’s kappa score: This measures the agreement between two labels from a classifier 

and a ground truth, which classify N items into C mutually exclusive categories. The 

kappa score is a number between -1 and 1. In general, a score above 0.8 is considered as 

good agreement whereas zero or lower implies no agreement (practically random labels). 

Further, �� is the relative observed agreement among labels by a classifier and a ground 

truth, and �� is the hypothetical probability of chance agreement, using the observed data 

to calculate the probabilities of randomly seeing each category.

� =
�� − ��
1 − ��

= 1−
1 − ��
1 − ��

ㆍ Matthew’s correlation coefficient (MCC): This considers true and false positives and 

negatives and is generally regarded as a balanced measure, which can be used even if the 

classes are of varied sizes. The MCC is in essence a correlation coefficient value between 

-1 and +1, where a value of +1 represents a perfect prediction, 0 an average random 

prediction, and -1 an inverse prediction. In addition, in the multi-class case, the MCC can 

be defined in terms of a confusion matrix �  for �  classes. To simplify the definition, 

consider the following intermediate variables:
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�� = ∑ ���
�
� the number of times class � truly occurred,

�� = ∑ ���
�
� the number of times class � was predicted,

� = ∑ ���
�
� the total number of samples correctly predicted,

� = ∑ ∑ ���
�
�

�
� the total number of samples.

��� =
� × � − ∑ �� × ��

�
�

�(�� − ∑ ��
�) ×�

� (�� −∑ ��
�)�

�

When more than two labels exist, the value of the MCC no longer ranges between -1 and 

+1. Instead, the minimum value lies in the range of -1 and 0 based on the number and 

distribution of ground true labels. The maximum value is always +1.

In the evaluation for multi-class classification, there are three average calculation 

methods that are employed to evaluate the accuracy of classification as shown in Table 2.1.

ㆍ � the set of predicted (sample, label) pairs

ㆍ �� the set of true (sample, label) pairs

ㆍ � the set or labels

ㆍ �� , ��� the subset of �, �� with label �

ㆍ �(�, �) =
|� ∩ �|

|�|

ㆍ �(�, �) =
|� ∩ �|

|�|

ㆍ ��(�, �) = 2 ⋅
�(�,�)×�(�,�)

�(�,�)��(�,�)

Table 2.1. Definition of evaluation metrics

Average Precision Recall F-score

Micro �(�, ��) �(�, ��) ��(�, ��)

Macro
1

|�|
� �(�

�
, �
�
� )

�∈�

1

|�|
� �(�

�
, �

�
� )

�∈�

1

|�|
� �1(��, ��� )

�∈�

Weighted
1

∑ ��
�
� ��∈�

� ��
�
� ��(�

�
, �
�
� )

�∈�

1

∑ ��
�
� ��∈�

� ��
�
� ��(�

�
, �

�
� )

�∈�

1

∑ ��
�
� ��∈�

� ��
�
� ��1(��, ��� )

�∈�
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Micro-average is the calculation of metrics globally by counting the total true positives,

false negatives, and false positives. In contrast, macro-average involves calculating metrics 

for each label and determining their unweighted mean, and label imbalance is not considered. 

Furthermore, weighted-average is the calculation of metrics for each label, and then 

determining their average weighted by support (the number of true instances for each label). 

This changes the ‘macro’ method to incorporate label imbalance. Moreover, if all labels are 

included, “micro” averaging in a multi-class setting results in precision and recall, which are 

all identical to accuracy. In addition, “weighted” averaging may produce an F-score that is not 

between precision and recall.

Ferri et al. demonstrated that to measure the quality of models that might be affected by 

classes with a very low percentage of elements, the area under the ROC curve-based measures 

and macro-averages is not useful. This is because the global measure is heavily influenced by 

a poor assessment of an infrequent class [37], which is because a consequence of these 

measures assigning equal value to all classes independent of their frequency. In contrast, 

accuracy, mean F-measure, Kappa statistic, log loss, calibration loss, and mean squared error 

assign a relevance to each class, which is proportional to its frequency.

2.4.2. Time-to-event prediction

Time-to-event analysis refers to the analysis of the length of time until the occurrence 

of the event of interest [33], as explained earlier and denoted as S(t, X), where X = 

(X� , X�, … , X�) indicates the patient characteristics that are input to the model. For example, 

Nnet-survival provides the predicted S(t, X) at multiple specified time points as the model 

output [38]. Another example is the random survival forest, which estimates the cumulative 

hazard.
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ㆍ C-index: The most frequently used evaluation metric of survival models is the 

concordance index (c index, c statistic). It is a measure of rank correlation between 

predicted risk scores �� and observed time points � that is closely related to Kendall’s τ, 

and is defined as the ratio of correctly ordered (concordant) pairs to comparable pairs. 

Two samples �  and �  are comparable if the sample with lower observed time �

experiences an event, that is, if �� > �� and �� = 1, where �� is a binary event indicator. 

In addition, a comparable pair (�, �) is concordant if the estimated risk �� by a survival 

model is higher for subjects with lower survival time, that is, ��� > ��� ⋀ �� > ��  , 

otherwise the pair is discordant. Harrell’s C index discards the pairs that are incomparable 

because of censoring when computing the index value. Although easy to interpret and 

compute, Harrell’s concordance index has been shown exhibit excessively optimistic 

characteristics with increasing amount of censoring [39].

ㆍ Time-dependent Area under the ROC (AUC): The area under the ROC curve is a 

popular performance measure for binary classification task. In the medical domain, it is 

often used to determine the degree to which the estimated risk scores can separate 

diseased patients (cases) from healthy patients (controls). For a particular predicted risk

score ��, the ROC curve compares the false positive rate (1 - specificity) against the true 

positive rate (sensitivity) for each possible value of ��. When extending the ROC curve to 

continuous outcomes, in particular survival time, the disease status of a patient is typically 

not fixed and changes over time: at the time of enrollment a subject is usually healthy but 

may be diseased at a later time point. Consequently, the sensitivity and specificity must 

be considered as time-dependent measures. 

We consider cumulative cases and dynamic controls at a given time point �, which 

results in time-dependent cumulative/dynamic ROC at time � . Cumulative cases all 

indicate individuals who experienced an event prior to or at time � (�� ≤ �) , whereas 



22

dynamic controls are those with �� > � . Computing the area under the 

cumulative/dynamic ROC at time � aids in determining the degree to which a model can 

distinguish subjects who fail by a given time (�� ≤ �) from subjects who fail after this 

time (�� > �) . Hence, it is considered most relevant if one desires to predict the 

occurrence of an event in a period up to time � rather than at a specific time point �. Thus, 

for a particular estimator of the �-th individual’s risk score ��(��), the cumulative/dynamic 

AUC at time t is defined as

AUC�(t) =
∑ ∑ ���� > ���(�� ≤ �)���(������ ≤ ��(��))

�
���

�
���

(∑ �(�� > �))(∑ �(�� ≤ �))�
���

�
��� ��)

where �� are inverse probability of censoring weights. The function also provides a single 

summary measure that refers to the mean of the AUC(t) over the time range (��, ��).

AUC������(��, ��) =
1

��(��) − ��(��)
� AUC�(t)���(�)

��

��

ㆍ Integrated Brier Score (IBS) : The time-dependent Brier score is the mean squared error 

at time point � [40].

���(�) =
�

�
∑ �(�� ≤ � ⋀ �� = 1)

��� ���������
�

��(��)

�
��� + �(�� > �)

��� ���������
�

��(�)

where ��(�|�) is the predicted probability of remaining event-free up to time point � for a 

feature vector � , and 1 ��(�)⁄   is an inverse probability of censoring weight, estimated 

using the Kaplan-Meier estimator. The IBS provides an overall calculation of the model 

performance at all available times �� ≤ � ≤ ����. The integrated time-dependent Brier 

score over the interval [��; ����] is defined as

IBS = � ���(�) ��(�)
����

��

where the weighting function is �(�) = � ����⁄  . The integral is estimated via the 
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trapezoidal rule.
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3. Machine learning based � CDSS with 20 clinical variables

in patients with hepatocellular carcinoma 

In this Chapter, first, the motivation of the CDSS for patients with HCC has been 

demonstrated. In addition, characteristics of internal dataset and previous two-stage model 

including the model for treatment recommendation and survival prediction after initial 

treatment are described. In a previous study with dataset of a single center, we employed the 

cascaded random forest and random survival forest models for treatment recommendation and 

survival prediction, respectively. In addition, the process of feature selection of 20 

pretreatment key variables as a model input and performance of previous models has been 

demonstrated. Moreover, at the end of the chapter, data collection and characteristics of 

external datasets from eight institutions in South Korea have been presented.

3.1. Motivation 

Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading 

cause of cancer death worldwide in 2020 [41]. HCC comprises 75-85 % of primary liver 

cancer. The American Association for the Study of Liver Diseases and the European 

Association for the Study of the Liver currently endorse the BCLC staging system as a primary 

prognostic model and an allocating tool of HCC treatment [42, 43]. However, there exists a 

significant discrepancy in the initial treatment choice for HCC between the recommendations 

obtained from the BCLC system and real clinical practice [44, 45]. This is partially because 

treatment decision for HCC is highly multifactorial, wherein physicians must consider the 

HCC stage, baseline liver function, and performance status. Moreover, other factors such as 

location and distribution of tumor, presence of intermediate nodule, comorbidities, socio-
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economic status, availability of potential living related-donors, and the invasiveness and 

feasibility of each treatment option play critical roles in determining the clinical outcomes of 

patients with HCC. Consequently, such complex nature of HCC treatment decision has 

hindered large-sized clinical studies, because conventional statistical methods cannot aptly 

control multiple variables and factors.

Recent attempts on applying the AI technique to clinical practice have focused on using 

AI to develop CDSS [38, 46-48]. In our previous study, we developed CDSS that can evaluate 

multiple pretreatment variables to recommend optimal treatment options for HCC and also 

predict the overall survival of patients after treatment [49]. To evaluate the performance and 

expandability of this model, we collected the external dataset from eight other institutions in

South Korea and investigated the performance. 

3.2. Related work

3.2.1. Data collection for internal dataset

In our previous study, we retrospectively reviewed hospital records of 1,650 

consecutive patients who were newly diagnosed with HCC at Asan Medical Center (Seoul, 

Korea) between January and October 2010. Patients who had a treatment history of HCC (N 

= 356), received HCC treatment at other hospitals (N = 138), had a metastatic liver cancer (N 

= 71), had secondary malignancies that might affect survival (N = 36), had combined 

hepatocellular cholangiocarcinoma (N = 21), and cases involving incidentally detected HCC 

after transplantation (N = 7) were excluded from the study. Consequently, the study cohort 

included 1,021 patients with HCC. All enrolled patients were diagnosed with HCC through a 

liver protocol computed tomography, or magnetic resonance imaging, or liver biopsy 

according to the current guidelines of the American Association for the Study of Liver 
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Diseases [50]. Thereafter, patients were randomly allocated to the derivation or validation set 

at a ratio of 4:1.

We used our institutional database to collect information regarding the initial treatment 

option, initial treatment response, and overall survival of all patients. Pre-treatment 

demographic, clinical, and imaging variables, treatment information, and survival status of all

the 1,021 patents were retrospectively collected from the database of our center. Subsequently,

the following demographic factors were assessed: age, sex, Eastern Cooperative Oncology 

Group (ECOG) score, etiology of liver disease, presence of potential liver-related donor, body 

mass index (BMI), occupation, resident area, educational attainment of patient, maximum 

tumor size, tumor number, tumor type (infiltrative or nodular), tumor enhancement pattern, 

tumor distribution, portal vein invasion, hepatic vein or inferior vena cava invasion, bile duct 

invasion, extrahepatic metastases, presence of dysplastic nodule, radiofrequency ablation 

(RFA) feasibility, presence of cirrhosis, Child–Pugh class, presence of varix, laboratory 

findings including alpha-feto protein (AFP) level, within or above the Milan criteria, initial 

treatment option, initial treatment response, and overall survival. Further, RFA feasibility was 

defined as a size or location of the tumor to facilitate the successful receival of percutaneous 

RFA without significant complications, evaluated by a single hepatologist, G.H.C. However, 

any tumor located adjacent to a large vessel, bile duct, hepatic hilum, liver capsule, or 

extrahepatic organ was classified as an RFA non-feasible lesion. Overall, the survival was 

defined as the time form date of imaging diagnosis of HCC to the date of death due to any 

cause. 
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Table 3.1. Initially assembled 61 pretreatment variables

Abbreviations: AFP, alpha-fetoprotein; ALT, alanine transaminase; AST, aspartate transaminase; BCLC, Barcelona clinic liver 
cancer; ECOG, Eastern Cooperative Oncology Group; HBsAg, hepatitis B surface antigen; HBeAg, hepatitis B envelope antigen; 
HbeAb, hepatitis B envelope antibody; HBV, hepatitis B virus; HCV, hepatitis C virus; ICG, indocyanine green; INR, international 
normalized ratio; IVC: inferior vena cava; PIVKA-II, protein induced by vitamin K absence or antagonist II; PT, prothrombin 
time; RFA, radiofrequency ablation; WBC, white blood cell.
*RFA feasibility was defined as a size or location of the tumor to receive percutaneous RFA successfully without significant 
complication.

3.2.2. Feature selection: 20 key variables

Among the 61 initial pretreatment variables, 20 key variables (Table 3.2) were selected 

based on the importance scores calculated using the automated classifier and survival 

prediction models in the derivation set. Specifically, 14 variables were patient-related factors 

(age, BMI, Child–Pugh class, presence of varix, presence of ascites, ECOG score, hemoglobin 

Patient variables 
(N = 30)

Laboratory variables 
(N = 13)

Tumor variables 
(N = 18)

Epidemiology
Sex
Age
Performance status (ECOG)
Body mass index 

Aetiology
Alcohol history
Amount of alcohol intake

    Smoking history  
HBsAg
HBeAg
HBeAb
HBV DNA
History of HBV Treatment
HCV Ab
HCV RNA
History of HCV treatment

Liver cirrhosis-related
    Child-Pugh class

Varix
Ascites 
Hepatic encephalopathy
Presence of splenomegaly

Accompanying comorbidities
Hypertension
Diabetes mellitus
Dialysis
Heart disease
Pulmonary disease

Socio-economic status
Marriage
Potential donor
Occupation
Education 

    Residence area

WBC count
Haemoglobin
Platelet count
PT (INR)
Creatinine
Estimated glomerular filtration 
rate
Albumin
AST
ALT
Total bilirubin
AFP
PIVKA-II
ICG test

Enhancement pattern 
Tumor type
Tumor number
Maximal tumor diameter 
Tumor distribution
RFA feasibility* 
Presence of dysplastic nodule
Presence of portal vein invasion
Location of portal vein invasion
Presence of hepatic vein invasion
Presence of IVC invasion 
Presence of bile duct invasion
Presence of metastasis 
Presence of clinically significant 
metastasis
Location of metastasis
BCLC stage
Milan criteria
Asan criteria
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level, platelet count, albumin level, prothrombin time, alanine aminotransferase [ALT] level, 

total bilirubin level, creatinine level, and AFP level), and the remaining 6 were tumor-related 

factors (tumor number, maximal tumor size, tumor distribution, presence of portal vein 

invasion, presence of metastasis, and RFA feasibility). Furthermore, treatment options were 

classified as follows: transplantation, surgical resection, RFA or percutaneous ethanol 

injection therapy (PEIT), trans-arterial chemoembolization (TACE), TACE combined with 

external beam radiotherapy (EBRT), sorafenib treatment, supportive care, and other therapies, 

such as combined therapy (e.g., surgical resection with intraoperative RFA, TACE combined 

with sorafenib), palliative resection, intra-arterial cytotoxic chemotherapy, clinical trials, and 

EBRT alone.

Table 3.2. 20 Pretreatment key variables 

Patient related factors (14)

Age Value

Body mass index, kg/m2 Value

ECOG Performance status 0, 1, 2, 3, 4

Child-Pugh score 5 – 14

Varix Absence / Presence

Ascites Absence / Controlled uncontrolled

AFP, ng/mL Value

Hemoglobin, g/dL Value

Platelet count, x109/mm3 Value

ALT, U/L Value

Total bilirubin, mg/dL Value

Albumin, mg/dL Value

Prothrombin time, INR Value

Creatinine, mg/dL Value

Tumor related factors (6)
Tumor number 1, 2, 3, 4 or more 

Maximum tumor size, cm Value

Distribution Single segmental / Unilobal / Bilobal

Portal vein invasion Absence / Unilateral / Main portal or both portal vein
Metastasis Absence / Presence

RFA feasibility* Feasible / Non-feasible

Abbreviations: AFP, alpha-fetoprotein; ALT, alanine aminotransferase; ECOG, Eastern Cooperative Oncology Group; RFA, 
radiofrequency ablation
* RFA feasibility is defined as a size or location of the tumor to receive percutaneous RFA successfully without significant 
complication
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3.2.3. Model training and tunning

Using 20 key variables, the random forest and random survival forest methods were 

trained and evaluated again to recommend treatment options and predict overall survival in 

both the derivation and validation sets. Consequently, the primary outcomes were accuracies 

of treatment recommendation and survival prediction. The index date is defined as the date 

that patients undergo their first liver protocol computed tomography or magnetic resonance 

imaging, and the follow-up period for each patient is estimated from this date to the date of 

death or the last follow-up date. However, owing to the large differences in survival between 

treatments, training a machine learning-based model of treatment recommendation and 

survival prediction in an integrated way is challenging. Therefore, separate and training were 

conducted for the treatment recommendation and survival prediction models.

Treatment recommendation models were hierarchically designed using six classifiers 

similar to treatment planning in clinical practice. A supervised learning methodology was 

adopted to prefer curative modalities using a classifier method. Further, the transplantation 

option was not considered in the treatment decision algorithm because of the medical 

environment of severe shortage of deceased liver donor. However, although not included in 

the classifier model, transplantation was suggested as an option, provided the Millan criteria 

was satisfied. Moreover, because factors affecting the prognosis were different for each 

treatment, separate survival prediction models were developed for each treatment. In addition, 

the proposed CDSS system was operated by sequentially using treatment recommendation 

and survival prediction models.

The treatment recommendation and survival prediction model was developed 

employing the random forest model. Random forest, a representative ensemble method, is 

widely used because it is powerful and relatively lighter than other ensemble methods [51, 

52]. It constructs several tree-type base models and forms an ensemble through a technique 
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referred to as bootstrap aggregating or bagging. Further, Gini impurity and log-rank test were 

used as the splitting rules for random forests, in case of treatment recommendation and 

survival prediction models, respectively. In addition, other possible combinations of 

hyperparameters of models were investigated via a grid search using GridSearchCV library in 

Scikit-learn package.

Figure 3.1 shows the schematic diagram for the construction of the CDSS for HCC. The 

model comprised six multi-step classifiers and seven survival prediction sub-models. The 

input variables (N = 20) were processed with the algorithm for treatment recommendation 

with multi-step classifiers. The model for HCC was designed with preference for curative 

modalities (transplantation, resection, RFA or PEIT). Upon the selection of a treatment option,

the model demonstrates the predicted survival curve for each patient. Additionally, if another 

treatment option is available, the model can suggest another predicted survival curve after the

alternative treatment. (Table 3.3) Therefore, the model can predict different survival curves of 

the same patient with different treatments, which is expected to aid clinicians make treatment 

decisions in actual clinical setting.

Table 3.3. Rules for alternative treatment options

Prediction Alternative treatment options

RFA TACE

Op

1) RFA feasibility = feasible → RFA

2) Portal vein invasion = Absence → TACE

3) TACE+RT

TACE No alternative option

TACE+RT Sorafenib, None

Sorafenib None

None No alternative option
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Figure 3.1. Overall architecture of CDSS
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3.2.4. Evaluation metrics

Baseline characteristics of the patients were compared using the chi-square and Mann–

Whitney U tests for categorical and continuous variables, respectively. Survival distributions 

were compared using the Kaplan–Meier method with a log-rank test. Patients in the follow-

up program who were not confirmed deceased were recorded as censored. In the initial phase 

of model development, a univariate Cox proportional hazards model was fitted to the 

treatment decision and survival endpoints and the selection of variables was realized by 

employing a two-step variable selection approach. The first step involved fitting a random 

forest model to compute a variable importance score, and thereafter the second step was to 

compute a relative selection frequency based on a bootstrap resampling method [53, 54]. 

Moreover, for the validation data sets, per-patient based analysis was performed from 

probability values using accuracy, sensitivity, specificity, positive predictive value, and 

negative predictive value for each classifier. The accuracy was defined as the percentage of 

correctly classified instances and calculated as follows:

Accuracy = (TP + TN) / (TP + TN + FP + FN),

where TP, TN, FP, and FN are true positive, true negative, false positive, and false 

negative, respectively. Each survival prediction model was validated using bootstrapping to 

correct for optimistic bias. Further, time-dependent concordance (C)-index was used to 

evaluate predicted survival times, which were ranked based on the observed survival times. 

All P-values were two-sided, and P < 0.05 was considered significant. Further, the outcome 

of implicit feature selection of the random forest was visualized using the Gini importance. 

SPSS version 21 (SPSS, Inc., Chicago, IL), open-source Scikit-learn package in python 

version 0.19.1 [55], and random Forest SRC package in R version 3.4.1 (R Core Team, Vienna, 

Austria) [35] were utilized for statistical analyses.
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3.2.5. Results

We trained our CDSS system using the derivation set (N = 813) and validated it in the 

validation set (N = 208). Two sets were divided via stratified random splits. Consequently, the 

same derivation and validation sets were used for both treatment recommendation and 

survival prediction models, respectively. Thus, a total of 460 and 128 patients died during the 

median follow-up periods of 37.8 (interquartile range [IQR], 8.3–84.7) and 48.6 (IQR, 8.3–

83.1) months, respectively. The baseline demographics of patients are summarized in Table 

3.4. Of the total 1,021 patients (mean age, 56.9 years), 81.8% were male, and 77.0% had 

positive hepatitis B virus surface antigen. Moreover, 76.3% of patients were classified with 

Child–Pugh class A, and 75.1% had an ECOG score of 0. Regarding tumor-related factors, 

41.7% of patients had multiple tumors, and the median maximal tumor diameter was 4.0 cm 

(IQR 2.3–8.5). Portal vein invasion and distant metastasis were confirmed in 22.8% and 12.2% 

of patients, respectively. BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 

18.0%, 36.6%, and 6.3% of patients, respectively. As an initial treatment, transplantation was 

performed in 4.5%, resection in 32.9%, RFA or PEIT in 7.5%, TACE in 31.5%, TACE 

combined with EBRT in 6.6%, sorafenib treatment in 3.0%, and supportive care in 10.1% of 

patients. Additionally, 3.8% of patients underwent other therapies; nine patients underwent 

resection combined with intraoperative RFA, nine underwent palliative resection, eight 

underwent EBRT to liver, six underwent TACE combined with sorafenib or cytotoxic 

chemotherapy, and four underwent intra-arterial cytotoxic chemotherapy. Moreover, three 

patients were enrolled in clinical trials and underwent systemic therapy. There was no 

significant difference between the derivation and validation set with respect to patient-, tumor-, 

or treatment-related variables.
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Table 3.4. Baseline characteristics of the patients, tumors, and initial treatment options

Characteristics
All patients
(n = 1021)

Age, yr 56.9 ± 10.5

Gender Male 835 (81.8)
Female 186 (18.2)

ECOG Performance status 0 858 (84.0)
1 or 2 123 (12.0)
3 or 4 40 (3.9)

Etiology of liver disease HBV 786 (77.0)
HCV 71 (7.0)
Others 164 (16.0)

Heavy alcohol consumption Yes 168 (16.5)
Ascites Present 173 (17.0)
Varices Present 312 (30.6)
Child-Pugh class A 779 (76.3)

B 205 (20.1)
C 37 (3.6)

Body mass index, kg/m2 24.0 (22.1–26.0)
Tumor number 1 595 (58.3)

2–3 217 (21.2)
≥4 209 (20.5)

Maximal tumor size, cm 4.0 (2.3–8.5)

Distribution Single segmental 475 (46.5)
Unilobal 245 (24.0)
Bilobal 300 (29.4)

Distant metastasis Present 125 (12.2)
Vascular invasion Unilateral 150 (14.7)

Main or bilateral 83 (8.1)
RFA feasibility† Feasible† 226 (22.1)
BCLC stage 0 131 (12.8)

A 284 (27.8)
B 228 (22.3)
C 314 (30.8)
D 64 (6.3)

Laboratory findings AFP, ng/mL 42.1 (6.7–838.2)
Hemoglobin, g/dL 13.5 (12.2–14.6)
Platelet count, x109/mm3 143 (97–197)
ALT, U/L 37 (25–53)
Total bilirubin, mg/dL 1.0 (0.7–1.4)
Albumin, mg/dL 3.6 (3.2–4.0)
Prothrombin time, INR 1.07 (1.01–1.17)
Creatinine, mg/dL 0.8 (0.7–0.9)

Initial treatment Transplantation 46 (4.5)
Resection 336 (32.9)
RFA or PEIT 77 (7.5)
TACE 322 (31.5)
TACE combined EBRT 67 (6.6)
Sorafenib 31 (3.0)
Supportive care 103 (10.1)
Other therapies 39 (3.8)

Abbreviations: AFP, alpha-fetoprotein; ALT, alanine aminotransferase; BCLC, Barcelona clinic liver cancer; EBRT, external beam 
radiotherapy; ECOG, Eastern Cooperative Oncology Group; HBV, hepatitis B virus; HCV, hepatitis C virus; INR, international 
normalized ratio; PEIT, percutaneous ethanol injection; RFA, radiofrequency ablation; TACE, transarterial chemoembolization
*Variables are presented as mean±standard deviation or median (IQR)
†RFA feasibility is defined as a size or location of the tumor to receive percutaneous RFA successfully without significant 
complication
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Table 3.5 lists the accuracy of the six classifier models trained from the derivation set.

The recommended treatment from the model was compared with the treatment used in real 

clinical practice in the validation set. Overall, the proposed CDSS classifier model for HCC 

was well generalized and exhibited good performance, and its standard deviations were higher 

in the lower branches of the treatment (e.g., sorafenib treatment, supportive care, other 

therapies) owing to the number of patients being relatively smaller. The accuracies of 

classifiers 1, 2, 3, 4, and 5 were 81.0% (curative treatments versus not curative treatments), 

88.4% (resection versus RFA/PEIT), 76.8% (TACE vs. or not TACE), 76.6% (TACE + EBRT 

versus not TACE + EBRT), 80.0% (sorafenib treatment versus not sorafenib treatment), and 

80.1% (supportive care versus other therapies), respectively.

Table 3.5. Accuracy, sensitivity, specificity, positive predictive value, and negative predictive 

value for 6 classifier model in validation set

Accuracy Sensitivity Specificity PPV NPV

Classifier 1
(RFA/PEIT or resection vs. 
Not RFA/PEIT or resection)

81.0 ± 2.6 77.4 ± 4.1 83.7 ± 3.3 77.8 ± 3.6 83.5 ± 2.5

Classifier 2
(RFA/PEIT vs. Resection)

88.4 ± 3.1 56.2 ± 11.6 95.8 ± 2.7 76.8 ± 12.1 90.6 ± 2.3

Classifier 3
(TACE vs. Not TACE)

76.8 ± 2.9 82.3 ± 4.1 69.3 ± 5.5 78.3 ± 4.0 74.6 ± 4.9

Classifier 4
(TACE+EBRT vs. 
Not TACE+EBRT)

76.6 ± 4.7 43.9 ± 12.6 89.4 ± 3.9 61.6 ± 10.8 80.4 ± 4.3

Classifier 5
(Sorafenib vs. Not sorafenib)

80.0 ± 4.2 12.3 ± 13.3 95.0 ± 4.0 44.0 ± 37.7 83.1 ± 3.0

Classifier 6
(Supportive care vs. Others)

80.1 ± 6.3 53.0 ± 17.6 90.4 ± 5.2 67.7 ± 15.8 83.7 ± 5.6

Abbreviations: EBRT, external beam radiotherapy; NPV, Negative predictive value; PEIT, percutaneous ethanol injection; 
PPV, Positive predictive value, RFA, radiofrequency ablation; TACE, transarterial chemoembolization  

Figure 3.2 shows predicted survival curves of each recommended treatment in the 

validation set. The ‘Ground truth curves’ represent the Kaplan–Meier survival curve of 

patients in the validation set in real clinical practice. Further, the C-index values for the 
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derived models of overall survival for RFA/PEIT, resection, TACE, TACE+EBRT, sorafenib 

treatment, supportive care, transplantation, and other therapies were 0.725 (95% CI, 0.708–

0.741), 0.695 (95% CI, 0.680–0.709), 0.803 (95% CI, 0.796–0.809), 0.676 (95% CI, 0.658–

0.694), 0.684 (95% CI, 0.648–0.720), 0.710 (95% CI, 0.689–0.730), 0.959 (95% CI, 0.949–

0.969), and 0.850 (95% CI, 0.835–0.884), respectively.
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Figure 3.2. True and predicted overall survival according to the initial treatment in the 

validation set (A) RFA/PEIT. (B) Resection. (C) TACE. (D) TACE combined with EBRT. (D) 

Sorafenib. (E) Supportive care. (F) Transplantation.
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3.3. Data collection for external dataset

The data of 2,685 consecutive patients who were newly diagnosed with HCC were 

collected from eight institutions, namely Korea University Guro Hospital (KUGH), Seoul 

National University Bundang Hospital (SNUBH), Samsung Medical Center (SMC), Seoul 

National University Hospital (SNUH), Catholic Medical Center (CMC), Severance Hospital 

(SH), Chung-ang University Hospital (CUH), and Inha University Hospital (IUH), in South 

Korea between January 2010 and December 2012. Thereafter, the information on 20 key 

variables used in previous study, initial treatment option, and survival information were 

investigated. The overall survival was identically defined as the time form date of imaging 

diagnosis of HCC to the date of death owing to any cause. The initial treatment options were 

categorized into eight groups similar to that of an internal dataset: RFA/PEIT, surgical 

resection, TACE, TACE combined with EBRT, sorafenib treatment, supportive care, 

transplantation, and other therapies. However, owing to significant heterogeneity among 

centers in the group of other therapies, the option for other therapies were eliminated from 

choices of treatment recommendation. In addition, the transplantation option was also 

removed in the recommendation options for a reason similar to that in the previous study.

All enrolled patients were diagnosed with HCC using liver protocol computed 

tomography, or magnetic resonance imaging, or liver biopsy following the current guidelines 

of the American Association for the Study of Liver Diseases. Further, all external datasets 

were allocated to external validation set. As an initial treatment, RFA or PEIT was performed 

in 6.8%–21.6 %, resection in 3.7%–35.8%, TACE in 34.8%–64.3%, TACE combined with 

EBRT in 0%–24.4%, sorafenib treatment in 0%–7.4%, supportive care in 3.1%–16.7%, 

transplantation in 0%–12.8%, and other therapies in 0%–24.3% of patients in each center 

(Table 3.6 and Figure 3.3).
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Table 3.6. Distribution of initial treatment in each center

Center
KUG

H
SNUB

H
SMC SNUH CMC SH AMC CUH IUH

RFA/PEIT
25 

(18.1)
21 

(10.9)
64 

(14.6)
45 

(20.1)
35 

(21.6)
10 

(6.8)
78

(8.3)
16 

(9.4)
24 

(8.7)

Resection
24 

(17.4)
27 

(14.0)
70 

(15.9)
38 

(17.0)
6

(3.7)
41 

(27.7)
335 

(35.8)
31 

(18.1)
52 

(18.9)

TACE
60 

(43.5)
107 

(55.4)
157 

(35.8)
129 

(57.6)
105 

(64.8)
78 

(52.7)
325 

(34.8)
110 

(64.3)
143 

(52.0)
TACE+EB

RT
0

(0.0)
6

(3.1)
107 

(24.4)
0

(0.0)
1

(0.6)
0

(0.0)
65

(7.0)
0

(0.0)
0 

(0.0)

Sorafenib
7 

(5.1)
7 

(3.6)
18 

(4.1)
5

(2.2)
0

(0.0)
11 

(7.4)
30 

(3.2)
2 

(1.2)
10 

(3.6)
Supportive 

care
22 

(15.9)
25 

(13.0)
23 

(5.2)
7 

(3.1)
15 

(9.3)
8 

(5.4)
102 

(10.9)
12 

(7.0)
46 

(16.7)
Transplantat

ion
0 

(0.0)
1 

(0.5)
25 

(5.7)
4 

(1.8)
2 

(1.2)
19 

(12.8)
46 

(4.9)
1 

(0.6)
0 

(0.0)
Other 

therapies
15 

(10.9)
4 

(2.1)
12 

(2.7)
0 

(0.0)
33 

(20.4)
36 

(24.3)
40 

(4.3)
8

(4.7)
3 

(1.1)

Total 138 193 439 224 162 148 935 171 275

Abbreviations: KUGH, Korea university guro hospital; SNUBH, Seoul national university bundang hospital; SMC, Samsung 
medical center; SNUH, Seoul national university hospital; CMC, Catholic medical center; SH, Severance hospital; AMC, 
Asan medical center; CUH, Chung-ang university hospital; IUH, Inha university hospital

Figure 3.3. Distribution of initial treatment in each center.
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4. Model for treatment recommendation

In this Chapter, various experiments related to the model for treatment recommendation 

aimed at improving performance and adjusting to multi-center dataset have been discussed. 

The use of ensemble voting machine and then comparing its performance with previous 

cascaded model are first described. Thereafter, various normalization and oversampling 

methods were applied to improve the model performance. Furthermore, individual training 

for each center and the option for a second treatment in addition to first treatment one was 

investigated to increase the accuracy in multi-center setting. Finally, the calibration of model 

and the results were described in this chapter.

Thus, the contribution of this work is following: 1) Accuracy was increased owing to 

use of ensemble voting machine compared with previous cascaded random forest model for 

internal dataset. 2) individual training for each center exhibited better performance than those 

of external validation, and for the option for second treatment in addition to first treatment 

option is suitable in multi-center setting.

4.1. Basic setup and notation

All experiments for internal dataset and individual training for external dataset were 

trained and validated with five-fold cross validation stratified by treatment. Further, 

experiments for external validation were performed with the model that was trained using the 

entire internal dataset. To evaluate the model and classify multiple treatments, the following 

metrics, which have been described in Chapter 2, were used: accuracy, macro-average of recall, 

weighted-average of precision, weighted-average F1 score, Kappa score, MCC
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4.2. Experiments

4.2.1. Ensemble voting model

Nineteen different machine learning algorithms were evaluated for this task: logistic 

regression, decision tree classifier, extra-trees classifier, random forest classifier, Adaboost 

classifier, gradient boosting classifier, histogram-based gradient boosting classifier, Xgboost, 

light gbm, catboost, gaussian naive Bayes, naive Bayes classifier for multivariate Bernoulli 

models, gaussian process classification, linear discriminant analysis, quadratic discriminant 

analysis, C-support vector machine, multi-layer perceptron classifier, k-nearest neighbors 

classifier, and k-means clustering. Scikit-Learn’s version 0.23.2, Xgboost’s version 1.5.0, 

catboost’s version 1.0.1, and lightgbm’s version 3.2.1 were used to construct models. 

Moreover, all classifiers were trained and evaluated by employing a stratified five-fold cross-

validation. Following each classifier being sorted based on mean accuracy, the voting 

classifier was trained using three, five, and seven top-performing classifiers and compared 

with each other including the top-performing classifier only. Finally, the performance of 

voting classifier compared to five top-performing classifiers were evaluated.

The performance of seven top-performing classifiers sorted based on accuracy is 

presented in Table 4.1. C-support vector machine with linear kernel demonstrated the highest 

mean accuracy of 65.45 and mean recall of 51.09, which was followed by the gaussian process 

classifier, random forest classifier, extra-trees classifier, histogram-based gradient boosting

classifier, light gradient boosting machine, and multi-layer perceptron classifier. 

Table 4.1. Top 7 classifiers sorted by accuracy for internal dataset

Model Accuracy Recall Prec. F1 Kappa MCC

Linear 
SVM

65.45 
(3.49)

51.09 
(4.26)

64.79 
(3.71)

64.32 
(3.20)

51.41 
(4.79)

51.75 
(4.93)

GPC
64.71 
(2.66)

48.92 
(3.24)

63.05 
(2.50)

63.22 
(2.49)

50.02 
(3.73)

50.41 
(3.80)
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RF
64.49 
(5.17)

47.54 
(5.18)

62.97 
(6.04)

63.01 
(5.19)

49.48 
(7.27)

49.92 
(7.53)

ET
64.49 
(3.18)

49.83 
(5.00)

63.29 
(3.41)

63.37 
(3.21)

50.07 
(4.77)

50.37 
(4.85)

HGBC
64.28 
(2.99)

49.07 
(5.62)

64.02 
(3.58)

63.22 
(2.80)

49.79 
(4.32)

50.20 
(4.54)

Light GBM
63.74 
(3.05)

49.62 
(4.26)

62.81 
(2.71)

62.73 
(2.65)

49.38 
(4.17)

49.73 
(4.41)

MLP
63.64 
(3.04)

48.72 
(2.88)

62.44 
(2.10)

62.46 
(2.58)

48.63 
(4.31)

48.88 
(4.35)

Abbreviations: Linear SVM, C-support vector machine with linear kernel; GPC, gaussian process classifier; RF, random forest 
classifier; ET, extra-trees classifier; HGBC, histogram-based gradient boosting classifier; Light GBM, light gradient boosting 
machine; MLP, multi-layer perceptron classifier

In case of three to seven top-performing classifiers, the C-support vector machine with 

linear kernel demonstrated inferior performance compared to voting classifier. Significant 

differences were not observed among voting classifiers with different numbers of top-

performing classifiers (Table 4.2). 

Table 4.2. Performance in terms of the number of classifiers composing voting classifier

Dataset No. of classifiers
Performance

Accuracy Recall Precision F1 Kappa MCC

Internal 
dataset

Top 1 65.45 (3.49) 51.09 (4.26) 64.79 (3.71) 64.32 (3.20) 51.41 (4.79) 51.75 (4.93)

Top 3 67.06 (2.16) 49.64 (2.88) 64.89 (2.01) 65.34 (1.96) 53.01 (2.97) 53.39 (3.04)

Top 5 67.27 (2.94) 52.22 (4.67) 65.82 (2.68) 65.93 (2.70) 53.85 (4.21) 54.22 (4.34)

Top 7 67.27 (2.96) 53.04 (3.94) 65.93 (2.96) 66.05 (2.78) 54.12 (3.95) 54.46 (4.10)

We compared cascaded method with ensemble voting model in the internal and external 

datasets. The performance of each model is shown in Table 4.3. In the internal dataset, mean 

accuracy was increased using the ensemble voting model. However, mean accuracy was 

slightly decreased in the external dataset, although it was not significant. 

Table 4.3. Performance of ensemble voting classifier vs. cascaded random forest model

Dataset Model Performance
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Accuracy Recall Precision F1 Kappa MCC

Internal 
dataset

Cascaded 63.42 (3.74) 51.27 (2.51) 63.02 (3.52) 62.91 (3.54) 49.51 (4.92) 49.64 (4.96)

Ensemble 67.27 (2.94) 52.22 (4.67) 65.82 (2.68) 65.93 (2.70) 53.85 (4.21) 54.22 (4.34)

External 
dataset

Cascaded 55.34 (6.09) 41.68 (3.88) 64.14 (5.11) 56.82 (4.61) 36.30 (7.89) 38.33 (7.38)

Ensemble 54.33 (4.29) 42.56 (4.79) 66.07 (5.06) 56.51 (3.04) 36.68 (5.97) 39.16 (5.37)

4.2.2. Modification of internal dataset

To improve the performance of the model, we applied various normalization and 

oversampling methods to the internal and external datasets. For the normalization test, min-

max normalization, z-score normalization, and robust normalization method ware applied and 

evaluated. Nevertheless, for the oversampling test, ROS and SMOTE were applied and 

evaluated (Table 4.4. and 4.5). 

Table 4.4. Performance of various normalization methods

Dataset Normalization
Performance

Accuracy Recall Precision F1 Kappa MCC

Internal 
dataset

Base 67.27 (2.94) 52.22 (4.67) 65.82 (2.68) 65.93 (2.70) 53.85 (4.21) 54.22 (4.34)

Minmax 67.81 (3.13) 52.91 (5.39) 66.32 (2.93) 66.55 (2.86) 54.78 (4.50) 55.11 (4.63)

Z-score 66.84 (3.17) 51.09 (4.49) 65.48 (2.93) 65.49 (2.94) 53.16 (4.53) 53.57 (4.69)

Robust 67.06 (3.18) 50.89 (5.25) 65.06 (3.22) 65.32 (3.08) 53.30 (4.65) 53.78 (4.82)

External 
dataset

Base 55.34 (6.09) 41.68 (3.88) 64.14 (5.11) 56.82 (4.61) 36.30 (7.89) 38.33 (7.38)

Minmax 55.04 (5.11) 41.24 (3.56) 64.35 (4.40) 56.71 (3.60) 36.01 (6.91) 38.11 (6.41)

Z-score 55.20 (5.84) 41.84 (4.12) 64.42 (4.29) 56.67 (4.15) 36.10 (8.01) 38.12 (7.52)

Robust 55.14 (5.63) 41.54 (3.79) 63.98 (4.73) 56.61 (4.03) 36.03 (7.46) 38.10 (6.98)

Table 4.5. Performance on various oversampling methods

Dataset Oversampling
Performance

Accuracy Recall Precision F1 Kappa MCC

Internal 
dataset

Base 67.27 (2.94) 52.22 (4.67) 65.82 (2.68) 65.93 (2.70) 53.85 (4.21) 54.22 (4.34)

ROS 65.67 (2.56) 55.41 (2.58) 66.59 (2.71) 65.30 (2.28) 53.12 (3.27) 53.53 (3.44)

SMOTE 64.71 (3.19) 56.18 (2.68) 66.64 (3.39) 64.78 (2.94) 52.41 (3.96) 52.81 (4.07)
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External 
dataset

Base 55.34 (6.09) 41.68 (3.88) 64.14 (5.11) 56.82 (4.61) 36.30 (7.89) 38.33 (7.38)

ROS 56.09 (5.75) 47.82 (7.67) 66.44 (4.54) 58.01 (5.05) 39.20 (7.66) 41.55 (6.93)

SMOTE 56.72 (5.94) 49.46 (8.12) 68.98 (4.03) 58.77 (5.37) 40.65 (7.71) 43.10 (6.86)

4.2.3. Individual training for external dataset

We trained and evaluated individually using the dataset of each center with a stratified 

5-fold cross-validation. The five top-performing classifiers were sorted based on mean 

accuracy after testing 19 machine learning classifiers for each dataset, and different voting 

classifiers were trained and evaluated. Moreover, the voting classifier composed of the five 

top-performing classifiers for internal dataset was also trained with each dataset and evaluated 

for comparison. Tables 4.6 and 4.7 presents the performance of individual training with top 5 

classifiers for each center and internal dataset, respectively. Almost no difference was 

observed in the mean accuracy, recall, and F1 score between two experiments.

Table 4.6. Performance of individual training with top five classifiers for each center

Center
Performance

Accuracy Recall Precision F1 Kappa MCC

KUGH 66.03 (5.81) 52.87 (3.49) 65.45 (8.95) 63.19 (6.77) 51.52 (7.54) 52.98 (7.13)

SNUBH 70.49 (3.68) 42.03 (3.63) 64.79 (6.79) 65.28 (5.73) 48.90 (6.58) 51.18 (5.88)

SMC 65.83 (4.30) 49.72 (4.97) 61.45 (4.75) 62.71 (4.32) 54.13 (5.80) 54.71 (5.83)

SNUH 62.10 (8.85) 39.64 (9.98) 59.00 (9.16) 59.92 (9.27) 31.67 (18.35) 32.06 (18.46)

CMC 71.57 (5.74) 45.33 (11.16) 68.47 (6.87) 68.58 (6.47) 40.38 (13.88) 42.25 (12.96)

SH 58.09 (6.31) 43.99 (11.70) 54.69 (6.82) 55.26 (6.87) 28.10 (12.93) 28.89 (12.85)

CUH 74.86 (6.58) 53.87 (12.96) 72.57 (9.60) 72.05 (7.61) 47.76 (15.14) 49.50 (14.90)

IUH 63.27 (5.91) 45.06 (7.13) 62.01 (7.52) 60.86 (7.36) 40.01 (12.00) 41.02 (11.73)

Average 66.53 (5.90) 46.56 (8.13) 63.55 (7.56) 63.48 (6.80) 42.81 (11.53) 44.07 (11.22)

Table 4.7. Performance of individual training with top 5 classifiers for internal dataset
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Center
Performance

Accuracy Recall Precision F1 Kappa MCC

KUGH 66.67 (8.64) 53.20 (6.09) 66.66 (8.35) 63.96 (7.56) 51.50 (11.98) 53.06 (12.56)

SNUBH 69.43 (2.94) 40.52 (4.01) 63.17 (6.97) 63.96 (5.12) 45.61 (8.03) 48.82 (5.83)

SMC 65.61 (3.30) 49.18 (2.62) 61.85 (3.08) 62.15 (2.98) 53.74 (4.22) 54.50 (4.16)

SNUH 63.41 (6.87) 37.91 (7.94) 59.84 (6.97) 60.77 (7.06) 32.48 (13.88) 33.25 (14.00)

CMC 70.95 (7.23) 44.19 (12.06) 68.02 (9.20) 67.71 (8.02) 37.54 (18.21) 39.36 (17.91)

SH 56.76 (4.36) 33.32 (10.84) 48.98 (7.35) 51.11 (6.63) 22.65 (12.36) 23.87 (12.40)

CUH 76.05 (9.47) 54.78 (17.70) 73.64 (11.77) 72.90 (10.96) 49.90 (20.96) 51.63 (20.32)

IUH 65.45 (8.13) 42.99 (10.09) 61.57 (13.18) 61.13 (11.10) 39.80 (18.46) 41.56 (18.15)

Average 66.79 (6.37) 44.51 (8.92) 62.97 (8.36) 62.96 (7.43) 41.65 (13.51) 43.26 (13.17)

In the comparison of individual training and external validation, the accuracy and recall 

of the former was higher than those of the latter as shown in Table 4.8. Further, mean 

accuracies of all centers with individual training were improved compared to those of external 

validation except for one center in SH. Figure 4.1 shows the mean accuracies according to 

number of patients, where no clear trend in accuracy was indicated with increase in the number 

of patients required to train the model.

Table 4.8. Performance of individual training vs. external validation 

Center No. of patients
Individual training External validation

Accuracy Recall Accuracy Recall

KUGH 138 66.03 (5.81) 52.87 (3.49) 61.59 44.77

SNUBH 193 70.49 (3.68) 42.03 (3.63) 56.99 38.78

SMC 439 65.83 (4.30) 49.72 (4.97) 52.62 44.09

SNUH 224 62.10 (8.85) 39.64 (9.98) 52.68 44.69

CMC 162 71.57 (5.74) 45.33 (11.16) 43.21 39.62

SH 148 58.09 (6.31) 43.99 (11.70) 60.14 38.05

CUH 171 74.86 (6.58) 53.87 (12.96) 63.16 47.65

IUH 275 63.27 (5.91) 45.06 (7.13) 52.36 35.8

Average 219 66.53 (5.90) 46.56 (8.13) 55.34 (6.09) 41.68 (3.88)
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Figure 4.1. Mean accuracy according to number of patients

4.2.4. Suggestion of second recommendation

The first and second treatment options were derived from the treatment with the highest 

and second highest probabilities in voting classifier, respectively. All evaluation metrics were 

measured again by including the second treatment option as the correct answer. Table 4.9 

shows the performance of previous cascaded random forest model and current ensemble 

voting machine in both internal and external datasets. Moreover, in the experiments for 

internal dataset, when only the first treatment option was accepted as the correct answer, the 

mean accuracies of cascaded random forest model and ensemble voting model were 63.42% 

and 67.27%, respectively. In contrast, in case the second treatment option was regarded as the 

correct answer, the mean accuracy of the ensemble voting model exhibited an increase of 

87.27%, compared to 73.69% in the cascaded model. Thus, the results of external datasets 

show a bigger difference between two models. In addition, in case the second treatment option 

was regarded as the correct answer, the mean accuracy of the ensemble voting model increased 

significantly to 86.06%, while the accuracy of the cascaded model barely increased. 
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Table 4.9. Comparison of performance considering second options

Dataset Model Options
Performance

Accuracy Recall Precision F1 Kappa MCC

Internal 
dataset

Cascaded
1st 63.42 (3.74) 51.27 (2.51) 63.02 (3.52) 62.91 (3.54) 49.51 (4.92) 49.64 (4.96)

2nd 73.69 (3.16) 64.78 (0.88) 75.20 (2.89) 73.70 (2.93) 63.94 (4.16) 64.36 (4.26)

Ensemble
1st 67.27 (2.94) 52.22 (4.67) 65.82 (2.68) 65.93 (2.70) 53.85 (4.21) 54.22 (4.34)

2nd 87.27 (2.25) 71.24 (2.90) 84.84 (2.19) 85.74 (2.17) 82.17 (3.17) 82.39 (3.20)

External 
dataset

Cascaded
1st 54.33 (4.29) 42.56 (4.79) 66.07 (5.06) 56.51 (3.04) 36.68 (5.97) 39.16 (5.37)

2nd 54.46 (4.33) 42.59 (4.80) 66.20 (5.13) 56.68 (3.10) 36.83 (5.97) 39.28 (5.38)

Ensemble
1st 55.34 (6.09) 41.68 (3.88) 64.14 (5.11) 56.82 (4.61) 36.30 (7.89) 38.33 (7.38)

2nd 86.06 (3.10) 64.49 (8.16) 88.38 (3.77) 85.83 (3.24) 78.13 (4.50) 78.69 (4.36)

Table 4.10 demonstrates the performance of cascaded model, external validation with 

ensemble model, and individual training with ensemble model for the external datasets 

depending on whether the second option was included. When only the first treatment option 

was accepted as the correct answer, the mean accuracy in external validation was found to be 

higher than that in individual training with values of 66.53% and 55.34%, respectively. In 

contrast, the mean accuracy in external validation was 86.06%, which is better than 84.08% 

of that in individual training. In addition, the cascaded model did not show any increase in 

accuracy although the second treatment option was accepted.

Table 4.10. Performance of cascaded random forest vs. ensemble voting machine vs. 

individual training considering second options

Dataset Options
Cascaded model External validation Individual training

Accuracy Recall Accuracy Recall Accuracy Recall

External
dataset

1st
54.33
(4.29)

42.56 
(4.79)

55.34
(6.09)

41.68 
(3.88)

66.53
(5.90)

46.56 
(8.13)

2nd
54.46
(4.33)

42.59 
(4.80)

86.06
(3.10)

64.49 
(8.16)

84.08
(2.55)

59.63 
(6.83)
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4.2.5. Calibration of model

Finally, we calibrated the voting classifier. Figure 4.2 and Table 4.11 present results of 

pre- and post-calibration of the model. Owing to the model calibration, the standard deviation 

of accuracy of the external dataset was reduced, although the mean accuracy was decreased 

slightly. Figure 4.2 shows the calibration plot for each treatment in the one-fold of cross-

validation folds in the internal dataset. The effect was minimal in TACE+EBRT, sorafenib, 

and supportive care; however, the calibration performance improved in the rest of the 

treatments. 

Figure 4.2. Calibration plot. A) Pre-calibration. B) Post-calibration. 

Table 4.11. Performance of non-calibrated model vs. calibrated model

Calibration Dataset Options
Performance

Accuracy Recall Prec. F1 Kappa MCC

Pre-
calibration

Internal 1st
67.27 
(2.94)

52.22 
(4.67)

65.82 
(2.68)

65.93 
(2.70)

53.85 
(4.21)

54.22 
(4.34)

dataset 2nd
87.27 
(2.25)

71.24 
(2.90)

84.84 
(2.19)

85.74 
(2.17)

82.17 
(3.17)

82.39 
(3.20)

External 1st
55.34 
(6.09)

41.68 
(3.88)

64.14 
(5.11)

56.82 
(4.61)

36.30 
(7.89)

38.33 
(7.38)

dataset 2nd
86.06 
(3.10)

64.49 
(8.16)

88.38 
(3.77)

85.83 
(3.24)

78.13 
(4.50)

78.69 
(4.36)

Post-
calibration

Internal 1st
65.99 
(2.68)

50.35 
(3.45)

64.45 
(2.65)

64.60 
(2.46)

51.97 
(3.53)

52.32 
(3.66)
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dataset 2nd
86.52 
(2.84)

69.52 
(4.24)

84.66 
(3.31)

85.00 
(2.92)

81.00 
(4.11)

81.31 
(4.06)

External 1st
56.65 
(4.98)

45.28 
(7.39)

66.17 
(5.71)

58.60 
(4.09)

38.33 
(6.24)

40.50 
(5.69)

dataset 2nd
85.29 
(1.65)

62.24 
(7.32)

85.92 
(3.59)

84.92
(2.44)

76.74 
(2.89)

77.33 
(2.82)

4.3. Discussion

In our experiments, ensemble voting machine exhibited better performance than 

previous cascaded random forest model. In the previous study [49], the model was intended 

to pretend according to the processes of decision making of physicians in real clinical situation. 

In most cases, decision for curative treatment versus non-curative treatment was preceded 

than decision for subdivided treatment choices. However, the hierarchical cascaded method 

presented worse performance compared to the ensemble voting method. One reason for this 

may be the errors that were generated at the higher level accumulated as they moved to the 

lower level. Meanwhile, the ensemble classifiers enable the compensation for the weakness 

of individual classifiers and use their combined knowledge to enhance its performance. 

Combining multiple outcomes in the ensembles have many reasons to achieve benefits of 

improved detection accuracy over a single base classifier. Dietterich et al. described the three 

major reasons involving statistical, computational, and representational reasons [56]. The 

statistical reason is that if the training data are insufficient for modelling the hypothesis space 

using one learning algorithm, then the aggregated knowledge of an ensemble may provide 

more correct outcomes. Computational reason is that the learning methods can be trapped in 

local optima, which may require high computational efforts for determining the global optima. 

Thus, it may be more appropriate for executing many local search methods from different 

initial points and aggregate them. Finally, the representational reason is that the optimal 

classification method may not be established, because the method may not be capable of 

modelling the hypothesis space of the problem accurately. 
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Kumar et al. presented the motivation and comprehensive review of intrusion detection 

systems based on ensembles in machine learning in their review paper [57]. In particular, they 

analyzed different ensemble methods in the field, considering different types of ensembles, 

and various approaches for integrating the predictions of individual classifiers for an ensemble 

classifier. In their study, it was shown that several studies results could be improved with help 

of ensemble classifier compared to that of an individual classifier as shown in our results. In

general, ensemble classifier is generated on the basis of a set of individual classifiers, followed 

by selection of certain correct and diverse classifiers, and finally aggregating their outcomes. 

Furthermore, a different set of individual classifiers for each institution in the individual 

training did not significantly affect the performance compared to fixed set of individual 

classifiers for internal dataset. Moreover, the ensemble classifiers were not implemented 

based on weighted majority voting in our experiments. Therefore, the weighted majority 

voting method as well as a new method for constructing this type of ensemble classifiers can 

be explored in future research. The research can be focused on both developing a weighting 

scheme that defines the way to measure the reliability of each classifier, and the weight 

generation method that determines the values of weight coefficients used to measure the 

reliability of each classifier [57].

Experiments for various normalization and oversampling methods did not show any 

improvement over original dataset. Five machine learning classifiers composing ensemble 

voting machine were C-support vector machine with linear kernel, gaussian process classifier, 

random forest classifier, extra-trees classifier, and histogram-based gradient boosting 

classifier. Among them, the random forest classifier, extra-trees classifier, and histogram-

based gradient boosting classifier are tree-based classifiers, wherein no difference in the 

results were observed regardless of whether they used unnormalized data or normalized data. 

Thus, it is likely that this was reflected in the results. In case of oversampling test, the mean 
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accuracy in the internal dataset after applying ROS and SMOTE was slightly decreased, while 

that in external dataset it increased. Leevy et al. provided a large survey of published studies 

focusing on high-class imbalance (i.e., a majority-to-minority class ratio between 100:1 and 

10,000:1) in big data to assist in addressing the adverse effects owing to class imbalance [7]. 

In their review, ROS demonstrated a better classification accuracy than RUS or SMOTE in 

most studies. However, none of the oversampling methods contributed significantly to the 

performance improvement with our datasets.

Figure 4.3 shows the distribution of features after reduction of features from 20 features

to 2-dimension using t-distributed stochastic neighbor embedding (t-SNE) and principal 

component analysis (PCA) after passing through the neural network. For visualization of 20 

features, the entire internal dataset was trained with validation set of 20 % of whole dataset 

using an artificial neural network comprising three-layers (20-25-10-6) to classify to six 

classes. Further, 10 features from intermediated layer of neural network were reduced to two 

dimensions with t-SNA and PCA. In Figure 4.3, as evident, the six treatments are not clearly 

separated in both training and validation set. In addition, the features in case of incorrect 

prediction using the same visualization method were analyzed. The reduced features of four 

groups from twenty features are depicted on the two-dimensional plane in Figure 4.4. The 

four groups include a group of patients treated with resection in the training set (Train=Op), 

treated with RFA/PEIT in the training set (Train=RFA), recommended for treatment with 

resection in the test set who had actually undergone RFA/PEIT in real situation (Tx=RFA, 

Pred=Op), and recommended for treatment with resection in the test set and had undergone 

resection (Tx=RFA, Pred=Op). The group of incorrect prediction (“Tx=RFA, Pred=Op”) were 

mainly shown in the mixed area of “Train=RFA” and “Train=Op” groups as shown in Figure 

4.4. Thus, this features analysis shows the reason for prediction of initial treatment for patients 

with HCC being challenging.
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Figure 4.3. Visualization of features of six treatments. A) Features in train set. B) Features in

validation set 

Figure 4.4. Feature analysis for cases of incorrect prediction. A) Results of feature reduction 

using t-SNE, B) Results of feature reduction using PCA

The results of external validation on datasets from eight centers of the model trained 

with the dataset of single center were not satisfactory. This may be primarily because each 

institution follows different patterns of treatments. This issue arises from the nature of results 

from machine learning being solely dependent on the training dataset. The European 

Commission also highlighted in their white paper on AI that retraining non-EU AI systems 

with European data may negatively impact accuracy without necessarily improving fairness 

if certain parameters that determine trade-offs between these two are specifically hard coded 

in the algorithm itself [58]. Moreover, they mentioned that algorithms may be fair even if the 

data used to train them capture human biases. Thus, to reflect more individual policies and 
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preferences for each center, it is effective to train with their own sufficient dataset as shown 

in our results. However, building a robust model with small amount of data using machine 

learning is challenging. Although individual training with dataset of each center presented 

higher classification performance than those from external validation, they were highly 

imbalanced between treatments in certain institutions with high performance for individual 

training, which is prone to overfitting. In addition, the mean accuracy in external validation 

was better than that in individual training when the second treatment option was accepted as 

the correct answer. The results demonstrate that the trained model with more abundant dataset 

can predict more minor classes well and it may be reflected to improvement of performance. 

Furthermore, the probability scores obtained from voting classifier for first and second 

treatment options could be expressed with levels of confidence in addition to the results of 

survival prediction as depicted in Figure 4.5.

Figure 4.5. Modified model for treatment recommendation
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5. Model for survival prediction

Chapter 5 presents the details of several experiments and results regarding the model 

for survival prediction. Different training mode with previous random survival forest model 

was evaluated for internal dataset. Further, using the modified model, results of individual 

training with dataset of each center and those of external validation were compared. Finally, 

the results of survival prediction according to recommended treatments were demonstrated.

All the proposed models were based on random survival forest [35, 36] architecture, 

which has been applied to previous model for survival prediction [49]. We begin by describing 

modification of training mode in previous model and the results of internal and external 

validation after modification of the model, followed with the results of individual training for 

each center. Finally, the various results of simulation of survival prediction according to 

treatment recommendation were demonstrated. Upon selecting the first and second treatment 

option using model to recommend initial treatment, the model for survival prediction 

demonstrates the predicted survival curve according to each option for each patient. Therefore,

the model can predict different survival curves of the same patient with different treatments, 

which can aid clinicians in making treatment decisions in actual clinical setting.

5.1. Basic setup and notation

Similar to that in Chapter 4, all experiments for internal dataset and individual training 

for external dataset were trained and validated with five-fold cross validation stratified by 

treatment. Further, the experiments for external validation were conducted after fitting the 

model with the entire internal dataset. We used the following three metrics for evaluating the 
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performance of survival prediction models: Harrell’s C index, integrated time-dependent area 

under the ROC curve (iAUC), and integrated Brier score (IBS).

5.2. Experiments

5.2.1. Modification of training mode

In the previous model, training of random survival forest model was conducted with 20 

key variables from each group who received specific treatment. We modified the training 

mode to training with 21 variables wherein the initial treatment information was included in 

addition to 20 key variables. The results of training with 20 and 21 variables are presented in

Table 5.1. The implementation of modified training mode exhibit better performance in all 

evaluation metrics.

Table 5.1. Performance of survival prediction using 20 variables vs. 21 variables

Validation
20 variables 21 variables

C-index iAUC IBS C-index iAUC IBS

Whole 0.8381 (0.0276) 91.89 (2.08) 0.12 (0.01)

RFA 0.7158 (0.1926) 72.98 (15.40) 0.23 (0.09) 0.7656 (0.1438) 77.49 (12.00) 0.17 (0.07)

Op 0.6681 (0.0401) 72.56 (6.05) 0.16 (0.04) 0.7049 (0.0421) 75.94 (6.09) 0.14 (0.03)

TACE 0.7796 (0.0397) 86.03 (2.85) 0.14 (0.01) 0.7842 (0.0338) 86.18 (2.42) 0.14 (0.01)

TACE+RT 0.6553 (0.0807) 67.57 (10.99) 0.21 (0.03) 0.6487 (0.0680) 72.63 (8.92) 0.20 (0.03)

Sorafenib 0.7419 (0.2060) 77.61 (22.02) 0.22 (0.04) 0.7562 (0.1505) 81.04 (15.81) 0.18 (0.03)

None 0.7352 (0.0385) 75.81 (2.98) 0.16 (0.02) 0.7566 (0.7360) 81.66 (79.16) 0.15 (0.16)

Average 0.7160 (0.0996) 75.43 (10.05) 0.19 (0.04) 0.7360 (0.0783) 79.16 (8.37) 0.16 (0.03)

Using the modified training mode, we evaluated the performance of survival prediction 

model for the internal and external datasets. As shown in Table 5.2, the results of internal 

validation are better than those of external validation test set. Furthermore, the performance 
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of survival prediction for each treatment in the internal dataset is presented in Table 5.3. The 

iAUC ranges from 72.63 to 86.18 with the highest performance being demonstrated in TACE.

Table 5.2. Performance of survival prediction of internal and external datasets

Dataset Center
Performance

C-index iAUC IBS

Internal AMC 0.8381 (0.0276) 91.89 (2.08) 0.12 (0.01)

External

KUGH 0.7812 87.08 0.10

SNUBH 0.7833 88.23 0.15

SMC 0.7580 84.28 0.15

SNUH 0.8053 89.48 0.14

CMC 0.7458 84.78 0.18

SH 0.8254 89.39 0.10

CUH 0.7208 80.73 0.17

IUH 0.7935 87.84 0.10

Average 0.7767 (0.0315) 86.48 (2.82) 0.14 (0.03)

Table 5.3. Performance of survival prediction for each treatment in the internal dataset

Treatment
Performance

C-index iAUC IBS

RFA 0.7656 (0.1438) 77.49 (12.00) 0.17 (0.07)

Op 0.7049 (0.0421) 75.94 (6.09) 0.14 (0.03)

TACE 0.7842 (0.0338) 86.18 (2.42) 0.14 (0.01)

TACE+RT 0.6487 (0.0680) 72.63 (8.92) 0.20 (0.03)

Sorafenib 0.7562 (0.1505) 81.04 (15.81) 0.18 (0.03)

None 0.7566 (0.7360) 81.66 (9.16) 0.15 (0.06)

Average 0.7360 (0.0783) 79.16 (8.37) 0.16 (0.03)

5.2.2. Individual training for external dataset

We trained and evaluated individually with the dataset of each center employing a 

stratified 5-fold cross-validation. Table 5.4 presents the performance of individual training 
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and external validation with the model trained with internal dataset. In contrast to the results 

of model for treatment recommendation, almost no difference was observed in the C-index, 

iAUC, and IBS between two experiments.

Table 5.4. Performance of survival prediction in the external validation and individual training

Center
External validation Individual training

C-index iAUC IBS C-index iAUC IBS

KUGH 0.7812 87.08 0.10 0.8069 (0.0546) 86.41 (2.64) 0.13 (0.03)

SNUBH 0.7833 88.23 0.15 0.7856 (0.0372) 87.67 (4.02) 0.15 (0.01)

SMC 0.7580 84.28 0.15 0.7715 (0.0166) 85.12 (2.31) 0.15 (0.01)

SNUH 0.8053 89.48 0.14 0.8213 (0.0351) 89.73 (3.04) 0.14 (0.01)

CMC 0.7458 84.78 0.18 0.7329 (0.0513) 83.07 (5.56) 0.17 (0.02)

SH 0.8254 89.39 0.10 0.8021 (0.0384) 87.31 (4.90) 0.13 (0.02)

CUH 0.7208 80.73 0.17 0.7896 (0.0308) 83.93 (4.76) 0.15 (0.01)

IUH 0.7935 87.84 0.10 0.7771 (0.0600) 86.12 (5.36) 0.14 (0.03)

Average 0.7767 (0.0315) 86.48 (2.82) 0.14 (0.03) 0.7859 (0.0405) 86.17 (4.07) 0.14 (0.02)

5.2.3. Survival prediction after treatment recommendation

We simulated our two-stage model sequentially constructed by the model for treatment 

recommendation and survival prediction. Subsequently, the risk was stratified by predicting 

survival considering the results of treatment recommendation. Figures 5.1 and 5.2 shows the 

predicted survival curve according to a recommended treatment. In Figure 5.1, the survival 

curve shows similar pattern between patient groups who were recommended for TACE and 

had undergone TACE or not. Meanwhile, the results of survival prediction presented different 

patterns when the group who were recommended for TACE but did not receive TACE in 

reality and thus were subdivided by each treatment actually received, as shown in Figure 5.2. 
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Although the treatment information were all the same with TACE, the survival curves were 

predicted differently by other features except for the treatment information.

Figure 5.1. Predicted survival curve according to a recommended treatment. A) Results of a 

group of patients who were recommended for TACE, and undergone TACE. B) Results of a 

group of patients who were recommended for TACE but received a different treatment.

Figure 5.2. Predicted survival curve according to a recommended treatment. Results of a 

group of patients who were recommended for TACE but received A) RFA. B) Resection. C) 

TACE+EBRT. D) Sorafenib. E) Supportive care.

The impact of treatment information with one of the 21 features as input to survival 
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prediction model is shown in Figure 5.3. Training with the different treatment information 

presented different survival curve in cases of TACE and resection, and TACE and supportive 

care. Further, the survival curve when the treatment feature was resection showed better 

survival than when it was TACE. However, the survival curve when treatment feature was 

supportive care demonstrated slightly worse survival compared to TACE. In particular, the 

predicted survival curve were more similar to the actual survival curve when the treatment 

information by the treatment recommendation model was inserted compared to when the 

actual treatment was included as treatment information.

Figure 5.3. Predicted survival curve according to a recommended treatment. Results of a 

group of patients who were recommended for TACE but received resection with treatment 

information as A) TACE. B) Resection. Results of a group of patients who were recommended 

for TACE but received another treatment with treatment information as C) TACE. D) None. 

(=Supportive care)
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Although not being very clear, iAUC showed a tendency to increase with increase in 

the number of patients, as depicted in Figure 5.4. However, this needs to be verified through 

further experiments.

Figure 5.4. iAUC according to number of patients

5.3. Discussion

In our experiments on the model for survival prediction using random survival forest 

model, changing the training owing to the inclusion of initial treatment information in addition

to 20 key variables from training with 20 key variables in each treatment group showed 

slightly higher performance. Further, the results of individual training with dataset of each 

center demonstrated similar or worse performance than those from external validation, which 

was different from the results of model for treatment recommendation. Finally, the two-stage 

model comprising treatment recommendation and subsequent survival prediction were 

simulated, wherein, the prognosis in each patient according to the results of treatment 

recommendation was stratified.

Previous training mode as training with 20 key variables in each treatment group 

demonstrated the noticeable drawback in the simulation study. In the group with fewer patients 
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choosing the treatment, for example, Sorafenib group, the outcome was found to be always 

inferior, regardless of the other characteristics the patient possessed. However, after modifying 

the training mode by incorporating initial treatment information into features to be trained, 

the other characteristics as well as initial treatment were also considered for predicting 

survival, although the treatment feature showed the highest importance score in the random 

survival forest model. 

In the experimental results of model for treatment recommendation in Chapter 4, 

individual training with dataset of each center presented higher performance than those from 

external validation when the second option was not considered. This may be because of the 

differences in patient groups, policies, and preferences in selecting treatments in other 

institutions could not be reflected only through training on the internal dataset. In contrast,

individual training showed similar or worse performance than those from external validation 

in the experiment for survival prediction model. Moreover, the model performance tended to 

increase with increase in the number of datasets used for training in our experiments. Thus, 

from these results, it can be carefully inferred that the model trained with the internal dataset 

that has the largest amount of data is suitable for use because the model for survival prediction 

shows a similar trend regardless of institution, in contrast to the model for treatment 

recommendation.

In the simulation study of our two-stage model, the survival curves were predicted 

differently when the group who were recommended for TACE were subdivided based on each 

treatment they actually received despite the treatment information all being the same with 

TACE. The results predicted by the model were consistent with the real survival curves for 

each treatment. In another experiment on the impact of different treatment information, 

training with the different treatment information demonstrated different survival curve. In 

particular, the predicted survival curve were more similar to the actual survival curve when 
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the treatment information by the treatment recommendation model was inserted compared to 

when the actual treatment was included as treatment information. Thus, this experimental 

result is an example demonstrates the reliability of the treatment recommendation model and 

the successive survival prediction model that agree well with reality. Moreover, these results 

show that the proposed two-stage model can reliably predict survival according to the type of 

treatment patients receive and it can be used as a risk stratification tool.
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6. Various applications for CDSS

In this chapter, we demonstrated several scenarios of the proposed two-stage model in 

real clinical setting. The chances of utilizing this model as an alternative of current staging 

system were described as a first scenario. Further, the usage of staging system in oncology 

facilitated the prediction of prognosis of patients and aided in making a decision of selecting

proper treatment based on certain stage. This was main purpose of the proposed model as well. 

We compared the recommendation from our model and BCLC stage in specific situation, that 

is, in patients with BCLC stage C. Second, the concept of digital twin has been discussed. 

Currently, digital twin technology is being developed and commercialized to optimize several 

manufacturing and aviation processes, while in the healthcare and medicine fields this 

technology is still in its early developmental stage [59-61]. We simulated certain cases using 

two different models with same structure but separately trained with different dataset from 

two centers. Furthermore, the possible expansion of this model in real clinical setting and 

issues of reliability were discussed in the latter in this chapter.

6.1. Treatment recommendation for BCLC stage

The BCLC staging system is a primary prognostic model and an allocating tool of HCC 

treatment. This stage recommends seven treatments including ablation, resection, transplant, 

chemoembolization, systemic therapy, and best supportive care according to five stages as 

shown in Figure 6.1. However, there exists a significant discrepancy in the initial treatment 

choice for HCC between the recommendations obtained from the BCLC system and that 

applied in real clinical practice.
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Figure 6.1. BCLC stages and treatment recommendation diagram [42]

The number of patients and their overall survival is demonstrated in Figure 6.2 using a 

Kaplan–Meier plot grouped with treatments that the patients have undergone in the internal 

dataset. In the internal dataset, there were 560 patients in BCLC stage C group. Although it 

was considered that the data were collected from January 2010 to October 2010 and BCLC 

guideline before 2010, a considerable number of patients treated with RFA/PEIT (also known 

as ablation), or resection, were contained in the group of BCLC stage C. 

Figure 6.2. Number of patients and their overall survival in BCLC stage C group

Regarding the 560 patients in BCLC stage C group, we split patients 4:1 into a train and 
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test group and thereafter evaluated the performance of the proposed model. Figure 6.3 

demonstrates the results of recommendation of the model in the test group (N = 114).

Figure 6.3. Classification results in the test group for BCLC stage C group. A) Recommended 

by the ensemble voting machine, B) Recommended by the BCLC stage

Further performing feature analyses among groups with the same prediction can 

facilitate the configuration of the characters of each group using the importance of features 

from each classifier composing voting classifier. Certain features may be correlated with 

features used in BCLC staging system, while others may not because common staging system 

usually use less than ten features for convenience of usage. Machine learning-based model 

enables more accurate and sophisticated prediction for treatment and survival solely based on 

their own dataset. However, such a system cannot create a new solution that has not been 

included in the dataset. In other words, even when the institution is primarily following a 

pattern of treatment different from many other institutions, and is in contrast to the direction 

that the majority considers appropriate, this system cannot provide new options that are not 

included in the dataset. Despite realizing the decision-making process to the best of their 
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knowledge, at times this model can be helpful, where physicians can refer to the manner in 

which other centers treat the patients with similar conditions and the results they have been 

achieving. In this context, we conducted a modelling using the concept of digital twin system 

and simulated the system in following topic.

6.2. Comparison between centers

At present, digital twin technology is being developed and commercialized to optimize 

several manufacturing and aviation processes, while in the healthcare and medicine fields this 

technology it is still in its early developmental stage [61-63]. It would be possible to use this

model in same institution to choose initial treatment and predict prognosis following the 

current treatment system. In addition, it can be also used for performing comparisons between 

other institutions. The overall structure of proposed system is depicted in Figure 6.4. We used 

the dataset from two centers of AMC and SMC because these datasets contain the largest 

number of patients among all the datasets. We separately trained the model with different 

datasets and validated via cases from another center, which is not used for training in two 

centers at once.
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Figure 6.4. Conceptual diagram for center comparison

The result of survival prediction in case of one patient being treated with TACE in 

SNUBH is demonstrated in Figure 6.5. Considering the poor prognosis of the example case, 

it would not be possible to conduct resection in real clinical setting as twenty features are still 

not sufficient for making a definite decision and confirming it. Meanwhile, we can interpret 

very carefully that survival may be expected to increase even if the surgery might be possible 

in this patient. However, the final decision ultimately rests with the physicians and patients.

The value of the proposed model will increase if physicians use these systems and review 

their own practices, and if these processes aid them in making the best decisions for cancer 

patients.

Figure 6.5. Results of survival prediction for one patient treated with TACE in SNUBH. A)

Survival prediction after treatment recommended to resection by AMC model. B) Survival 

prediction after treatment recommended to TACE+EBRT by SMC model.
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7. Discussion and conclusion

In this thesis, a two-stage model consisting of models for treatment recommendation 

and survival prediction after initial treatment was proposed for patients with HCC focusing 

on multi-center extension. The performance of treatment recommendation was improved 

using ensemble voting machine, and the model was applied in a multi-center setting owing to 

the suggestion of a second treatment option, in addition to first option with confidence levels. 

Although individual training with the dataset of each center revealed better performance in 

the model for treatment recommendation, results of external validation of the model trained 

by the internal dataset, exhibited acceptable performance with the setting of providing the 

second option. Meanwhile, results of individual training with the dataset of each center for 

survival prediction model were not observed to be superior to those of external validation of 

the model trained with the internal dataset. Further, the two-stage model was simulated, and 

consequently the risk was stratified via predicting the survival considering the results of 

treatment recommendation. Lastly, several scenarios of this model in real clinical situations

were demonstrated. The feasibility of this model as an alternative to the current staging system 

and an experiment of virtual clinical simulation using this model trained with two different 

centers were presented as the possible expansion of this system.

Making treatment decision and predicting personalized prognosis for each patient is 

crucial in oncological management. However, there is no definite and unchanging gold 

standard in decision-making for oncological treatments. In particular, a staging system that 

can be used worldwide and the corresponding treatment recommendation system are lacking 

for HCC. Treatments for HCC have been developed in various ways to effectively control 

cancer while considering residual liver function. Each institution has individually investigated 

and applied various treatments that exploit the characteristics of each institution to improve 
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the prognosis of HCC patients. In our study, the initial treatments in HCC patients around the 

same period showed considerably different distributions among institutions in South Korea. 

The diverse distribution of treatments by an institution reflects the preferences and policies 

for treatment selection of each institution, as well as the characteristics of the patient group. 

Therefore, individual training for each center is recommended if the goal of CDSS is to best 

reflect the characteristics of the center. However, often making a decision based on their own 

practice alone can be difficult for institutions with a small number of patients and inadequate 

experience with various treatments. In this case, the proposed modeling method can be 

employed as an alternative. According to our experimental results, the model trained by the 

internal dataset, containing the largest number of patients, showed acceptable performance 

with the setting of providing the second option along with the first option. However, a method 

to refer to the individual training version as well as the version of the big center together was 

introduced in Chapter 6. Moreover, in case of rare cancers, the decision-making may be more 

difficult due to scarce evidence. In addition, results of data-driven treatment recommendation 

and survival prediction using machine learning algorithm cannot solve this problem either. 

Thus, at centers with little experience that have not treated such precedents, it could be of 

great help in clinical practice to recommend the proper treatment and predict individual 

prognosis using experience of big centers with many patients. This information may also be 

helpful and provide certain intuitions to physicians particularly for in case of inexperienced 

one at the same center.

One of the weaknesses of this data-driven CDSS stems from their intrinsic data-

restricted natures. Cancer treatments have characteristics that constantly change with time. 

New evidence is accumulated based on new research and treatments, and novel treatments are 

constantly replacing old treatments. In particular, the recent growth of massive genetic and 

clinical databases, along with efficient computing systems to facilitate them have accelerated 
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the speed of treatment advances and shortened the cycle time for changes to treatment 

guidelines in oncology. While cancer treatment is changing rapidly, data-driven methods 

ultimately find answers in data based on the past. Until a proportion of newly developed 

treatment option is sufficient in the training dataset, the probability of recommending that 

treatment option can be very low. For example, in our case, Sorafenib treatment which is a 

protein kinase inhibitor with activity against many protein kinases, including vascular 

endothelial growth factor receptors, platelet-derived growth factor receptors, and RAF kinases

[62, 63] has not been widely used in the period when dataset was collected. Consequently, it 

was rarely recommended by the proposed model as well as reliability of results of survival 

prediction in case with sorafenib was not high.

To overcome these weaknesses of the proposed model, physicians need to understand 

the limitations of this system when they use it, and developers must update new live data 

according to the requirement. Figure 7.1 shows the schematic of training and deployment of 

the model. For the model of treatment recommendation and survival prediction where there is 

no fixed gold standard and having characteristics that change over time, continual learning 

with new live data is required. In addition, monitoring whether results from the model 

correlate with those from physicians through periodic analysis is an essential part. If the 

concordance rate is decreased, modification for training dataset to reflect real clinical situation 

may be helpful through discussion between physicians and developers. Furthermore, 

application of the proposed model at a center as per the comparison introduced in Chapter 6 

can present additional information by offering other practice options and their possible 

prognoses.
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Figure 7.1. Issues on model training and deployment

Moreover, the factors that determine the treatment choices and prognosis of a patient 

are constantly changing in this environment wherein new treatments are constantly being 

developed. Thus, we selected twenty key features including patient-related 14 variables and 6 

tumor-related factors based on the importance scores calculated using the automated classifier 

and survival prediction models among the 61 initial pretreatment variables. However, process 

of feature selection is very important for efficient training of machine learning model. 

Important features for changed and enlarged dataset with continual update of new data could 

be altered. Moreover, efficient feature selection is an additionally required important process 

in the continual learning. To facilitate automatic data update, automatic acquisition of data 

from electronic medical record (EMR) database and preprocessing for 14 patient-related 

factors and automatic segmentation and classification using deep learning technique for 6 

tumor-related factors, shown in Figure 7.2, might be helpful in continual learning. 
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Furthermore, the efficient concatenation of deep features without hand-crafted feature 

reduction from medical images, such as computed tomography (CT) and clinical prognostic 

variables, would be helpful for treatment recommendation and survival prediction, as 

described in Figure 7.3.

Figure 7.2. Overall framework for continual learning

Figure 7.3. Probable model framework using deep features from medical images 



73

Medicine is not just a science, but also a social and psychological subject. Wilkinson et 

al. mentioned two fundamental epistemological barriers to achieving individual-level 

predictions using machine learning [64]. First, machine learning approaches cannot identify 

cause and effect, because causal inference is fundamentally impossible to achieve without 

making assumptions. Second, majority of health states and events are so complex that we can 

only understand them probabilistically, and chance can never be predicted at the individual 

level. The authors asserted that many severe challenges in personalized medical care cannot 

be addressed through algorithmic complexity and thus require collaboration between 

traditional methodologists and experts in medical machine learning to avoid extensive 

research waste. In a similar context, any tool and guideline can only be used as a doctor’s 

reference, and localization factors and individual elements should be considered for different 

patients, particularly for cancer patients with large heterogeneity. Further, the physical and 

mental state, economic situation, complications, and treatment preference of the patient as 

well medical reimbursement plan in different countries must be considered instead of 

providing advice based simply on existing knowledge. Furthermore, although our algorithm 

was validated from multicenter database in South Korea, the model might show less power 

when used in centers in other countries with different demographics (e.g., ethnicity, etiology, 

level of hospital facility, socio-economic status of the country, and even reimbursement 

policy), where the optimal treatment option would be different.

In conclusion, we developed a machine learning-based model for initial treatment 

recommendation and validated for multi-center datasets. We conducted various experiments 

to render this model usable in multi-center setting. Further, we improved the accuracy of 

model for treatment recommendation by using ensemble voting machine and demonstrated 

that the suggestion for a second treatment option in addition to first was suitable in multi-

center setting. We simulated this two-stage model and stratified the risk by predicting survival 
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according to the results of treatment recommendation. Moreover, we demonstrated several 

clinical scenarios of this model in real clinical setting and discussed issues on the model 

deployment with future research topics. This model for CDSS can be applied to provide 

practical utility to many physicians and patients of multiple centers.
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Abstract (In Korean)

암 환자를 치료함에 있어 환자의 개별 예후를 예측하고, 적절한 치료 전략을 선택

하는 일은 매우 중요하다. 임상의에게 익숙한 일반적인 통계 모델은 표본에서의 관찰

결과를 통해 예후 인자를 판별하고 특정 예후 인자를 가진 경우의 상대적인 위험률 등

을평가할수는있지만, 이를이용하여환자의개별예후를예측하기는힘들다. 최근의

료 분야에서는 인공 지능 기술을 이용하여 임상 의사 결정 지원 시스템을 개발하려는

시도들이 활발하게 이뤄지고 있다. 그러나 이러한 예후 예측 모델을 개발하였다 하더

라도 서로 다른환자군 및특성을 가진다른 임상기관에서도 사용할수 있도록일반화

시키는 것은 상당히 어려운 문제이다. 본 학위 논문에서는 단일기관에서 일정 기간 치

료한 간세포 암종 (Hepatocellular carcinoma) 환자들의 데이터를 바탕으로 초기 치료를

권고하고, 이에 따른 생존율을예측해 주는 기계 학습 기반의 2 단계 모델을 개발 및 검

증하였다. 특히, 이 모델을 국내 8 개 의료기관에서 확보한 외부 데이터셋을 활용하여

검증하고이를다른기관에서도사용가능하도록수정및보완함으로써다기관활용성

을 높일수 있는 방안에 대해 논의하였다.

본 학위논문의 첫 번째 단계에서는 치료 전 주요 변수 20 개를 이용하여 간세포암

종의 초기 치료에 사용되는 6 가지 치료 중 하나를 권장하는 모델을 개발하였고, 이를

다기관 데이터셋을 사용하여 검증하였다. 우선 여러 기계 학습 모델을 테스트한 후 가

장좋은성능을보인 5 개의기계학습분류기를사용하여최종적으로앙상블보팅분류

기 (Ensemble voting classifier)를 사용하여 치료를추천하도록 하였고, 데이터셋에 대해

정규화나 샘플링 기법을 활용하여 분류의 성능이 향상되는 지 실험하였다. 또한, 단일

기관의 데이터셋으로 훈련한 모델을다기관 데이터셋으로 검증하는 것에그치지 않고

각 개별 기관의 데이터셋으로 훈련한 결과와 비교하였는데, 그 결과 개별 기관의 데이

터셋으로훈련한모델의결과가더높은정확도를보였다. 반면, 개별기관의데이터수

가적어예측의신뢰도가떨어지는경우를보완하기위하여타기관의데이터로훈련한

모델을사용하기위한방법으로첫번째추천옵션과 두번째추천옵션을그신뢰수준

과 함께 제공하는방식을 사용하였을 때가장 높은정확도를 보였고, 이를본 모델에서

다기관 확장성을 높일 수있는하나의방안으로 제시하였다.

본 학위 논문의 두 번째 단계에서는 초기 치료 이후의 생존 예측 모델을 개발하였

다. 치료 권고 모델에 사용된 20 개의 주요 변수에 초 치료 정보를 포함하여 총 21개의
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변수로 무작위생존 숲 (Random survival forest) 모델을 사용하여개별 환자의 생존율을

예측하였다. 이 모델에 대해서도 단일 기관의 데이터셋으로 훈련한 모델의 다기관 검

증 결과와 각 개별기관의 데이터셋으로훈련한 결과를 비교하였는데, 그결과 치료 권

고 모델의 결과와는 대조적으로 다기관 검증 결과가 개별 훈련 후 검증시와 유사하거

나 더 좋은 성능을 보였다. 또한, 첫 단계의 치료 권고 결과에 따라 생존율이 어떻게 달

라지는 지 시뮬레이션 함으로써 2 단계 모델을 이용한 각 치료의 위험도를 층화시키는

실험도 수행하였다.

본 학위 논문의 세 번째 단계에서는 이러한 모델이실제 임상 환경에서 어떻게 유

용하게사용될수있는지특정시나리오들을제시하였다. 첫번째로, 본모델이현재병

기 시스템의대안으로사용될수있는지그가능성을 살펴보는의미로, 본모델의치료

추천결과와바르셀로나임상간암병기(BCLC stage)의치료추천결과를 BCLC C 병기

의 환자들에서 실제 받은 치료와 비교하여보았다. 그 결과 본 모델에서 권고한치료와

실제받은치료의일치도가바르셀로나임상간암병기에서권고한치료보다높음을확

인할 수 있었다. 두 번째로는, 두 개의 서로 다른 센터의 데이터셋으로 훈련한 두 개의

모델에 대하여 다른 기관들의 데이터셋을 시뮬레이션해 보았다. 그 결과, 같은 조건을

가진 환자라도 각 기관의 데이터셋을 바탕으로 그 특성을 반영하여 서로 다른 치료를

권고하고, 다른생존율을보일수있다는결과를확인할수있었다. 이러한활용시나리

오는 실제 임상상황에서 본모델을 확장하여 어떻게 사용할 수 있는 지에 대한 예시를

보여준다.

결론적으로본학위논문에서는 20 개의임상변수를이용하여간세포암종환자에

서 적절한 초기치료를 권고하고 그에따른 생존율을 예측해 주는기계 학습기반의 모

델을 개발하였다. 뿐만아니라 이 모델은 단일 기관이 아닌 국내의 여러 기관에서사용

할 수 있으려면어떠한 점을보완해야하는 지 여러가지 실험을 통해검증하고분석하

였다. 본 CDSS 모델은 실제 임상 환경에서 경험이 적은 의사와 기관들에 실용적인 유

용성을 제공해 줄것으로기대된다.
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