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국문요약 

트리아제(triage)는 신경학적 응급 상황의 조기 진단과 보고에 필수적이다. 본 연구는 건강한 

개인들의 뇌 컴퓨터 단층 촬영 (CT) 영상 데이터를 훈련 데이터로, 응급 뇌 CT 영상을 판독 

리스트에서 재정렬하고 이상 영역을 나타내는 심층 생성 모델 기반의 이상 검출 알고리즘을 

개발하였다. 응급 환자 감지 성능에 대한 내부 및 외부 검증으로 AUC (95% 신뢰 구간)는 각각 

0.85 (0.81–0.89)과 0.87 (0.85–0.89)이었다. 응급실 코호트 임상 시뮬레이션 테스트 결과, 

트리아제 시스템 적용 전후로 응급 환자의 대기 시간 중위값 294초 (422.5초 [사분위 범위 299] 

- 70.5초 [사분위 범위 168])만큼 유의하게 줄었으며, 방사선 전문의의 보고 처리 시간 중위값은 

297.5초 (445.0초 [사분위 범위 298] - 88.5초 [사분위 범위 179])로 유의하게 빨라졌다 (p < 0.001). 
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서론 

Neurological emergencies should be diagnosed and treated as soon as possible to reduce mortality and 

morbidity rates and to enhance functional outcomes1–3. For the initial screening and diagnosis of 

neurological conditions, non-contrast brain computed tomography (CT) is the current standard imaging 

modality. In this regard, radiology worklist reprioritization based on image findings is critical in the 

emergency department (ED). 

With the excellent achievements of deep learning in various radiological tasks, several studies have 

demonstrated that deep learning-based radiological triage can improve radiology workflow efficiency, 

accelerate radiology reporting, and enable timely management of patients with critical findings (e.g., 

intracranial hemorrhage or large vessel occlusion on brain images) 4–7. However, data-related problems 

have restricted the broad clinical application of deep learning. The construction of large-scale annotated 

training datasets across diverse populations, disease entities from common to rare, medical centers, and 

acquisition protocols has remained a significant obstacle to developing a deep learning system in 

medicine. In addition, the clinical efficacy of supervised deep learning models has been validated only 

in selected patients with the risk of having a single disease or a few specific diseases. Therefore, this 

approach cannot guarantee that deep learning can cope with new or previously unseen conditions. As a 

result, the clinical applicability of supervised deep learning with a narrow clinical focus has been limited. 

Recently, pilot studies have shown that deep generative models trained on normal data can detect 

anomalies8–13. Deep generative models learn to capture target data distribution; hence, they can detect 

anomalous data that deviate from the target distribution without prior knowledge of anomalies. 

Moreover, the anomaly detection framework based on deep generative models can visually highlight 

the model’s prediction using reconstruction error. Although previous studies using this framework have 

attracted considerable attention, they have two limitations: 1) lack of external and clinical validation 

tests (hence, whether the model can be generalized to real-world situations cannot be guaranteed) and 

2) no clinical utility test of them.  

This study aimed to develop and validate an anomaly detection algorithm (ADA) based on a deep 

generative model trained only with normal brain CT images and investigate the clinical impact of an 

ADA-based triage system on ED radiology workflow using a randomized crossover clinical simulation 

test. Importantly, this study aimed to assess the real-world performance of the ADA using brain CT 

images in internal and external ED screening cohorts. 
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본론 

Fig. 1: Our proposed anomaly detection framework based on a deep generative model— closest 

normal style-based generative adversarial network (CN-StyleGAN)—trained on normal brain 

CT images. The model reconstructs a brain CT image as its closest normal-style brain CT image. Based 

on the density error, the anomaly score of the scan is determined and used to identify emergency cases, 

followed by visualization of the detected lesion upon overlay. 

 

We developed an ADA based on a deep generative model called the closest normal style-based 

generative adversarial network (CN-StyleGAN). CN-StyleGAN was closely modeled after StyleGAN2. 

CN-StyleGAN comprised three deep neural networks: a style-based generator (G), discriminator (D), 

and style-based encoder (E). We used the same architecture as StyleGAN2 for G and D; E followed the 

architecture of D, although the last fully connected layer was modified to output an 8192-dimensional 

latent code, 𝐰 ∈ 𝐖+, followed by a leaky ReLU of α = 0.214. Given a brain CT image as an input, E 

encodes the image into the closest normal-style latent code, and G generates the closest normal-style 

brain CT image from the latent code, trying to fool D by making the generated image indistinguishable 

from the true image. Then, D tries to discriminate the generated image from the true image.  Using brain 

CT images from healthy individuals, CN-StyleGAN was trained to reconstruct a scan into the closest 

normal-style scan. The density error between the actual scan and the reconstructed scan was used to 

determine the anomaly score of the scan to identify emergency cases. Cases identified as emergency 
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cases were reprioritized based on their anomaly scores in the radiology worklist as well as the 

visualization of the predicted lesions (Fig. 1). 

 

 

Fig. 2: Data flow diagram of the collection and curation process of the training, tuning, internal 

validation, and external validation datasets. The training dataset was collected and curated to include 

brain CT scans from healthy individuals by reviewing and applying NLP algorithms to radiological 

reports. In addition, consecutive brain CT scans from individuals who underwent emergency screening 

for suspected neurological conditions in the EDs of the internal and external institutions were 

independently and retrospectively collected. The internal dataset was randomly divided into two parts: 

a tuning dataset and an internal validation dataset. The external validation dataset included brain CT 

scans from 1,795 consecutive individuals who had visited the ED of the external institution for five 

months. 

 

Table 1. Baseline characteristics of the patients and image acquisition information according to 

the training, tuning, and validation sets. Data are presented as the mean ± standard deviation or 

number of cases (%). Abbreviations: CT, computed tomography 

Characteristics Training Tuning Internal 

validation 

External 

validation 

Sample size 34,085 271 273 1,795 

Age (year) 42.9 ± 19.6 58.1 ± 18.0 59.1 ± 17.6 60.3 ± 19.3 

Sex     

Female 18,232 (53.5%) 143 (52.8%) 137 (50.2%) 875 (48.7%) 

Male 15,853 (46.5%) 128 (47.2%) 136 (49.8%) 920 (51.3%) 

Emergency     
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severity 

Immediate  18 (6.6%) 18 (6.6%) 80 (4.5%) 

Urgent  22 (8.1%) 23 (8.4%) 117 (6.5%) 

Indeterminate  10 (3.7%) 10 (3.7%) 50 (2.8%) 

Benign  59 (21.8%) 60 (22.0%) 436 (24.3%) 

Normal  162 (59.8%) 162 (59.3%) 1,112 (61.9%) 

Diseases in the 

emergency 

group 

 40 41 197 

Brain mass-

like lesion 

 10 (25%) 16 (39.0%) 20 (10.2%) 

Acute 

infarction 

 6 (15%) 3 (7.3%) 39 (19.8%) 

Hemorrhage  19 (47.5%) 18 (43.9%) 128 (65.0%) 

Hydrocephalus  4 (10%)  2 (4.9%) 6 (3.0%) 

Other diseases  1 (2.5%) 2 (4.9%) 4 (2.0%) 

CT scanner Siemens 

Healthcare (n = 

19, 420) 

· Definition  

· SOMATOM 

Definition  

· SOMATOM 

Definition 

Flash  

· Definition 

AS  

· SOMATOM 

Definition 

Edge  

· SOMATOM 

Force  

· SOMATOM 

Definition 

AS+  

· SOMATOM 

Definition 

AS 

· Sensation 16  

 

GE Healthcare (n 

= 14,656) 

· LifeSpeed 

Plus  

Siemens 

Healthcare (n = 

268) 

· SOMATOM 

Definition 

Edge  

· SOMATOM 

Definition 

Flash  

· SOMATOM 

Definition 

AS+  

 

· GE Healthcare (n 

= 3) 

· Discovery 

CT750 HD  

· LightSpeed 

VCT 

Siemens 

Healthcare (n = 

270) 

· SOMATOM 

Definition 

Edge  

· SOMATOM 

Force  

· SOMATOM 

Definition 

AS+  

 

· GE Healthcare (n 

= 3) 

· Discovery 

CT750 HD  

· LightSpeed 

VCT 

Siemens 

Healthcare (n = 

1751) 

· SOMATO

M 

Definition 

Edge  

· SOMATO

M Scope  

 

GE Healthcare 

(n = 44) 

· LightSpeed 

16  

· LightSpeed 

VCT  
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· LightSpeed 

QX/i  

· HiSpeed 

CT/i  

· Optima 

CT660  

· Discovery 

CT750 HD  

· LightSpeed 

VCT  

· LightSpeed1

6  

 

Neurologica (n = 

9) 

· CereTom  

Slice thickness 

(mm) 

· 4.8 (n = 14,316)  

· 5 (n = 19,676) 

· 10 (n = 93) 

· 5 (n = 271) · 5 (n = 273) · 4.8 (n = 1,065) 

· 5 (n = 730) 

 

Fig. 2 and Table 1 summarize the data collection, baseline characteristics, and image acquisition 

information for the datasets. For the development of CN-StyleGAN, a total of 197,038 non-contrast 

brain CT scans and paired radiology reports were retrospectively collected from patients who visited an 

urban, tertiary, academic hospital between January 1, 2000, and August 31, 2018. After iterations of the 

data curation process, the training dataset comprised 34,085 normal brain CT scans from healthy 

patients. In detail, the data curation process included three steps. First, we reviewed the radiology 

reports from 10,000 randomly sampled CT scans and selected keywords for anomalous CT findings 

such as positive pathological findings, benign lesions, and postoperative changes. Second, a natural 

language processing (NLP) algorithm (PyConTextNLP15) was used to exclude anomalous brain CT 

scans based on these keywords. Finally, two radiologists (with 14 years and four years of experience in 

reading brain CT images, respectively) randomly selected 1,000 CT scans and reviewed their radiology 

reports. If anomalous CT scans were found during this step, additional keywords were added. This data 

curation cycle was repeated five times to obtain completely normal CT scans. A total of 79,060 

postoperative CT scans and 78,713 abnormal CT scans were excluded. Finally, the NLP-based data 

curation was assessed by manually reviewing the radiology reports of 1,000 randomly selected cases. 

Of the 39,265 potentially eligible cases, CT scans from 5,180 cases were not available for automatic 

downloading using the in-house system. Finally, non-contrast brain CT scans from 34,085 healthy 

individuals (mean age ± standard deviation [SD]: 42.9 ± 19.6 years; female: 18,232 [53.5%]) were 



 

 

 6 

retrospectively collected from a tertiary academic hospital for the training dataset.  

Furthermore, the brain CT scans were collected independently and retrospectively from consecutive 

individuals who underwent emergency screening for suspected neurological conditions in the EDs of 

an internal and an external institution. For the tuning and internal validation test, after six cases were 

excluded due to download errors, 544 non-contrast brain CT scans of ED patients (mean age ± SD: 58.6 

± 17.8 years; women: 280 [51.5%]) were consecutively collected from Asan Medical Center in February 

2019. The internal dataset was subsequently randomly divided into two parts: a tuning dataset and an 

internal validation dataset, and the ratio of each emergency severity group was preserved. For the 

external validation test, 1,795 non-contrast brain CT scans from ED patients (mean age ± SD: 60.3 ± 

19.3 years; female: 875 [48.7%]) were consecutively collected from Gangneung Asan Hospital from 

January 1, 2019, to May 31, 2019. A board-certified emergency radiologist (with 14 years of experience 

reading brain CT images) reviewed all CT images in the internal and external validation datasets and 

classified the cases according to the category system for emergency severity16–18. This system 

categorized the cases into the following categories based on the urgency of treatment: normal, benign, 

indeterminate, urgent, and immediate (Table 2). Subsequently, both urgent and immediate cases were 

defined as emergency cases that required emergency intervention, regardless of the neurological entity. 

Cases of a critical, life-threatening condition that required immediate medical or surgical treatment were 

defined as immediate cases. Cases that were not life-threatening currently but required rapid treatment 

because they could deteriorate were defined as urgent cases. The disease entities in the emergency cases 

were categorized as brain mass-like lesions, acute infarctions, intracranial hemorrhages, hydrocephalus, 

and other diseases. A brain mass-like lesion was defined as a volumetric space-occupying lesion (e.g., 

brain tumor, brain abscess, tumefactive demyelinating disease, or encephalitis) distinct from the brain 

parenchyma with a normal appearance. The emergency cases accounted for 15.0% (41 of 273) and 11.0% 

(197 of 1,795) of the internal and external validation datasets, respectively. Disease entities from the 

internal and external validation datasets included brain mass-like lesions (39.0% [16 of 41] vs. 10.2% 

[20 of 197]), acute infarctions (7.3% [3 of 41] vs. 19.8% [39 of 197]), intracranial hemorrhage (43.9% 

[18 of 41] vs. 65.0% [128 of 197]), hydrocephalus (4.9% [2 of 41] vs. 3.0% [6 of 197]), and other 

diseases (4.9% [2 of 41]] vs. 2.0% [4 of 197]). 

 

 

 

 

 

 



 

 

 7 

Table 2. Emergency severity categories according to brain CT findings 

 

Categories Definition 

Emergency  Immediate  CT findings suggest a critical, life-threatening condition that 

requires immediate medical or surgical treatment. 

· Brain tumor with a mass effect resulting in midline shift and 

herniation 

· Intracranial hemorrhage with a mass effect resulting in 

midline shift and herniation 

· Extensive subarachnoid hemorrhage 

· Hypoxic encephalopathy 

· Large territorial or malignant acute infarction 

Urgent CT findings suggest a current non-life-threatening condition 

that requires rapid treatment to prevent deterioration. 

· Intracranial hemorrhage without a mass effect 

· Focal acute infarction 

· Tumor without a mass effect, such as midline shift and 

herniation 

· Marked hydrocephalus (Evans’ index > 0.4) 

· Unruptured giant aneurysm 

Non-

emergency 

Indeterminate CT findings suggest that prompt treatment is not required but 

further workup or follow-up is required. 

· Indeterminate small hypodense cerebral lesions 

· Incidental pituitary adenoma, small meningioma, or 

suspected small aneurysm 

· Hydrocephalus (0.4 ≥ Evans’ index > 0.34) 

Benign CT findings suggest that no further workup is required in the 

emergency department. 

· Severe brain atrophy, arachnoid cyst, encephalomalacia, 

leukoaraiosis, or postoperative change 

Normal Normal 
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Fig. 3: Training process of CN-StyleGAN.  

 

     The architecture of CN-StyleGAN includes a style-based generator (G), discriminator (D), and style-

based encoder neural network (E). The training dataset containing normal brain CT axial slices was 

used to jointly train D and E, while the pre-trained weights of G were kept constant. The model learned 

to reconstruct a query brain CT image as the closest-normal brain CT image. Note that the input brain 

CT image was randomly erased for the model to learn the context of normal brain CT images by filling 

in the missing region. 

     Training. Fig. 3 illustrates the training process of CN-StyleGAN. We trained CN-StyleGAN using 

normal brain CT images and several training processes for the model to encode the style of normal brain 

CT images. First, we trained G and D for 160,000 iterations following the original training process of 

StyleGAN2. Subsequently, we trained E and D but not G with loss functions including VGG16-based 

learned perceptual image patch similarity (LPIPS) loss19,20, domain-guided loss21, and adversarial loss 

functions from StyleGAN2. LPIPS loss measured the discrepancy between real images ( 𝐱 ) and 

reconstructed images (G(E(𝐱))) in the feature space of VGG16. To improve the performance and 

increase the stability, we downsampled the images to a resolution of 256 × 256 pixels before computing 

the LPIPS distance. The domain-guided loss measured the L1 distance between E(𝐱) and E (G(E(𝐱))) 

for the in-domain property, regularizing the latent code to be inside the latent space of the normal brain 

CT data distribution. For adversarial loss, non-saturating loss22 was used with R1-regularization23 at 

every 16th step to stabilize the training of D. After adversarial training, the reconstructed images were 

indistinguishable from the normal brain CT images. Furthermore, random erasing of brain CT images24 

was used so that E could learn the semantics of normal brain CT images by filling in the missing region. 

We trained the model in PyTorch25 with the Adam optimizer26 for 200,000 iterations with hyper-

parameters (β1 = 0, β2 = 0.99, ε = 10-8, and minibatch = 32). The learning rate was 10-5 for the E and 10-

6 for the D. 
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     Gaussianized latent space. Previous studies on StyleGAN have indicated that data distribution can 

be explicitly modeled as a normal distribution in the intermediate latent space of StyleGAN27,28. 

Similarly, we explicitly modeled the data distribution of normal brain CT images in the intermediate 

latent space. We used E to map each normal brain CT image, slice-by-slice, from the training data to 

the latent space and used the latent codes to estimate the sample statistics for each slice order. Thus, the 

empirical covariance matrices, ∑, and means, 𝛍, were accumulated for each layer of the intermediate 

latent space.  

     Inference. Fig. 4 illustrates the inference method and anomaly scoring system of CN-StyleGAN. A 

CT scan included up to 32 axial slices from the bottom to the top. We initialized the latent code, 𝒘𝒊𝒏𝒊𝒕, 

for each axial slice (𝐱) of the scan as E(𝐱) and the noise maps (𝐧) from a normal distribution. We 

Gaussianized and optimized the latent code (𝐰) with L1, LPIPS, and the in-domain loss functions using 

the Adam optimizer for 100 epochs. Furthermore, the in-domain loss was modified to regularize the 

latent vector in the Gaussianized latent space only when the latent code deviated from the mean of the 

data distribution of normal brain CT images in the latent space compared with the in-domain latent code, 

E(G(𝐱)). After the latent code was optimized as 𝐰∗, we optimized the noise maps with the L1 loss 

function for 100 iterations. Noise maps can be optimized to generate out-of-domain images29; therefore, 

we proposed a masked noise optimization that forced the model to reconstruct the normal region alone. 

At each optimization step, a binary mask, 𝐌, was defined to predict the lesion area in the scan. To 

calculate 𝐌, the residual difference between an image (𝐱) and the reconstructed image (G(𝐰∗, 𝐧)) was 

brain-extracted30, median-filtered with a window size of 17, and thresholded by 5 Hounsfield units. 

Moreover, the number of false positives in 𝐌 decreased because of the intersections of binary masks at 

the previous optimization steps. Consequently, 𝐌 was used to set a target image for optimization: 

𝐱target = 𝐌 ⊙ G(𝐰∗, 𝐧init) + (𝟏 − 𝐌) ⊙ 𝐱 (1) 

where ⊙ denotes a pointwise multiplication. At the last optimization step, the binary mask was used as 

the lesion attention map for prediction. 

     Anomaly score. The anomaly score was calculated as follows: first, reconstruction error for a slice 

𝐱𝑖  of a scan was defined as: 

R(𝐱𝐢) = ‖𝐌 ⊙ ( 𝐱i −  G(𝐰, 𝐧))‖ 
(2) 

which is the binary masked density error between the slice, 𝐱𝑖 , and the reconstructed slice, G(𝐰, 𝐧). 

Second, this reconstruction error was normalized, slice-by-slice, based on the slice order, using the 

reconstruction error statistics of the mean, 𝐑𝛍, and SD, 𝐑𝛔, of the normal brain CT images. A total of 

1,000 scans were randomly selected from the training dataset for the normal brain reconstruction error 

statistics. Finally, this normalized per-slice reconstruction error of 32 slices for the scan was summed 
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to obtain the anomaly score: 

Anomaly score = ∑
𝐑(𝐱𝒊)− 𝐑𝛍𝒊

 

𝐑𝛔𝒊

𝟑𝟐
𝒊=𝟏  (3) 

 

  

Fig. 4: Inference method and anomaly score system of CN-StyleGAN  

This figure demonstrates the inference method and anomaly scoring system of CN-StyleGAN. a, The 

inference method of CN-StyleGAN. Given a brain CT slice, x, the latent vector, 𝒘, was initialized as 

E(x), and the noise maps, 𝒏, were initialized from the unit normal distribution. After the latent vector 



 

 

 11 

optimization, the noise maps were optimized. Masked noise optimization was proposed for the noise 

map optimization. b, Derivation of the binary mask in the masked noise optimization process. The 

residual difference between an input image and the reconstructed image was brain-extracted, median-

filtered, and thresholded. Moreover, the false positives in the binary mask were reduced because of the 

intersections between the binary masks in the previous optimization steps. c, The calculation process of 

the anomaly scoring system. The reconstruction error of a slice was derived as the binary masked 

density error between the input slice and the reconstructed slice. This reconstruction error was 

normalized, slice by slice, based on the slice order, using the reconstruction error statistics (mean and 

SD of normal brain CT images) from the training dataset. Finally, this normalized per-slice 

reconstruction error of 32 slices for a CT scan was summed to determine the anomaly score. 

 

Clinical simulation test. To investigate the clinical efficacy of the ADA-based triage system for 

radiology workflow, a randomized crossover study was performed in two sessions using the external 

validation dataset by referring to the existing study33 (Fig. 11a). Two radiologists (each with ≥ 14 years 

of experience in reading brain CT images) independently and retrospectively performed a clinical 

simulation test using a washout period and varying reading orders in a crossover design to assess brain 

CT scans with and without the help of the triage system. Specifically, a total of 1,795 brain CT scans 

from the external validation dataset were randomized to two groups (group A [898 brain CT scans] and 

group B [897 radiographs]). Each block enrolled 23 brain CT scans, except for one block in group A 

that enrolled 24 brain CT scans, as the number of imaging studies (n = 878) in group A could not be 

divided evenly by 23. In the first session, each reader assessed the brain CT scans in group A without 

the help of the triage system and those in group B with the help of the triage system. In the second 

session, each reader assessed the brain CT scans in group A with the help of the triage system and those 

in group B without the help of the triage system. The first and second sessions were separated by at 

least two weeks, and the reading order of the blocks was randomized and different for each reading 

session. Our triage system reprioritized emergency cases based on their anomaly scores and labeled 

them in red in the worklist to attract the readers’ attention. The readers were able to overlay the 

segmentation mask (lesion attention) predicted by CN-StyleGAN on the brain CT image. The readers 

interpreted the brain CT images and determined the presence of critical findings in the CT scans using 

an in-house user interface that provided the radiology worklists of the brain CT scans and their images 

(Fig. 5). The readers were blinded to the clinical information, imaging reports, and number of 

emergency cases included in the study. 

The clinical efficacy of the ADA was analyzed according to three radiological time metrics based on 

previous studies6,31,32: wait time (WT; the time required to open a CT for image review from the 
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beginning of one block), radiology report turnaround time (TAT; the time required to report a critical 

CT finding from the beginning of one block), and reading time (RT; the time between opening and 

closing a CT) for each case in each block. These time metrics were calculated based on the timepoints 

in the CT interpretation process, which were automatically recorded by the software. The metrics were 

calculated for each case in each block and were defined as follows: 

WT(i) = (Timestamp of opening CTi) – (Timestamp of opening a block) (4) 

TAT(i) = (Timestamp of reporting image findings in CTi) – (Timestamp of opening a block) 
(5) 

RT(i) = (Timestamp of closing CTi) – (Timestamp of opening CTi), 
(6) 

where CT𝑖 is the i th CT in a block. 

     Statistical analyses. The mean values of the anomaly scores between emergency and non-emergency 

cases were compared using independent t-tests. The emergency case detection performance of CN-

StyleGAN was analyzed by calculating the AUC, sensitivity, specificity, and accuracy using the internal 

and external validation datasets. The optimal anomaly score cutoff value was determined from the 

maximum value of Youden's index for the ROC curve analysis using the tuning dataset. The bootstrap 

method (10,000 iterations) was used to calculate 95% CIs. The median values of the time factors in the 

clinical simulation test were compared using the Wilcoxon signed-rank test and Wilcoxon rank-sum 

test. Analyses were performed using Python version 3.8.5 (sklearn 0.23.2; Python Software Foundation), 

R version 4.1.0 (R Foundation for Statistical Computing), and ggplot2 version 3.6.3. All statistical tests 

were two-sided, and the statistical significance was set at p = 0.05. 
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Fig. 5: User interface for the clinical simulation test 

The web-based user interface shown here provides the radiology worklists of brain CT images and 

displays Digital Imaging and Communications in Medicine (DICOM) images. In the first screen, the 

readers can select a block in a top-to-bottom order. In the next screen, the worklists of brain CT images 

in the selected block are observed. The readers can open each brain CT image according to the assigned 

order. The opening times of each block and each brain CT image are automatically recorded. The readers 

can adjust the window level of the images and can zoom in to magnify the images. After the readers 

determine the presence or absence of emergency CT findings, they click the "Critical Finding" button 

to report the CT findings. If the readers click the button "Next," the user interface will automatically 

move to the next case. The time is automatically recorded upon clicking the buttons. Pre- ADA triage, 

the user interface provides worklists of randomly ordered brain CT images. Post-ADA triage, the ADA 

reprioritizes brain CT images in the worklists and labels emergency cases with red color. The user 

interface provides the overlay activation function. The readers can see the lesion attention (mask overlay) 

predicted by the ADA by clicking the button "Overlay." 
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결론 

 

Fig. 6: Detection performance of the ADA for brain CT triage. a In both the internal and external 

validation tests, the anomaly scores differed significantly between non-emergency (n = 232 for internal 

validation; n = 1,598 for external validation) and emergency cases (n = 41 for internal validation; n = 

197 for external validation) (all p < 0.001). Box plots show the median (center line), first and third 

quartiles (box edges), and whiskers 1.5 times the IQR. Data points outside the whiskers are considered 

outliers. Two-sided p value was calculated using independent t-tests. b ROC curve analysis for assessing 

the performance of the ADA according to different target groups in the internal and external validation 

tests. Date are presented as mean AUC values with 95% CI.  

 

Emergency case detection performance of the ADA. The mean ± SD of the anomaly score was 

significantly different between the non-emergency and emergency groups in the internal and external 
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validation tests (14.8 ± 36.9 vs. 98.6 ± 119.7, p < 0.001, and 14.5 ± 47.3 vs. 118.5 ± 177.3, p < 0.001, 

respectively) (Fig. 6a). The emergency case detection performance of the ADA was analyzed by 

calculating the area under the receiver operating characteristic (ROC) curve (AUC), sensitivity, 

specificity, and accuracy with 95% confidence intervals (CIs). The maximum value of Youden's index 

for the ROC curve analysis using the tuning dataset revealed the optimal anomaly score cutoff value. 

In the internal and external validation datasets, no data were excluded to reflect real data without 

sampling bias. Consequently, the AUC, sensitivity, specificity, and accuracy with 95% CIs were 0.85 

(0.81–0.89), 0.71 (0.60–0.82), 0.78 (0.74–0.82), and 0.77 (0.73–0.80), respectively, in the internal 

validation test and 0.87 (0.85–0.89), 0.78 (0.74–0.82), 0.81 (0.80–0.83), and 0.81 (0.80–0.82), 

respectively, in the external validation test (Fig. 6, Fig. 7, and Table 3). The false negative rates were 

29.3% (12 of 41 in the internal validation dataset) and 22.3% (44 of 197 in the external validation 

dataset). The false positive rates were 22.4% (52 of 232 in the internal validation dataset) and 19.1% 

(305 of 1,598 in the external validation dataset). For the detection of immediate cases, the ADA 

achieved the AUC values of 0.96 (0.94–0.99) and 0.95 (0.93–0.96) in the internal and external 

validation tests, respectively. According to disease entity, the AUC values with 95% CIs in the internal 

and external validation tests were as follows: brain mass-like lesions, 0.92 (0.88–0.96) vs. 0.92 (0.88–

0.96); acute infarctions, 0.91 (0.86–0.95) vs. 0.87 (0.83–0.91); intracranial hemorrhages, 0.78 (0.70–

0.85) vs. 0.86 (0.83–0.88); hydrocephalus, 0.82 (0.64–0.97) vs. 0.94 (0.92–0.97); and other diseases, 

0.95 (0.91–0.99) vs. 0.80 (0.65–0.94) (Fig. 8). Fig. 9 shows representative cases of various diseases 

detected as emergency cases by the ADA and lesion attention maps provided by the ADA (see Fig. 10 

for representative false-positive and false-negative cases). 

Furthermore, sensitivities and specificities (95% CI) were calculated, with the thresholds derived 

using the tuning dataset at high sensitivity levels of 0.95 and 1.00. At a sensitivity level of 0.95 for the 

tuning dataset, the sensitivity and specificity were 0.90 (0.83–0.97) and 0.60 (0.56–0.65), respectively, 

in the internal validation set and 0.89 (0.86–0.92) and 0.63 (0.62–0.65), respectively, in the external 

validation set. At a sensitivity level of 1.00 for the tuning dataset, the sensitivity and specificity were 

1.00 (1.00–1.00) and 0.42 (0.37–0.47), respectively, in the internal validation set and 0.96 (0.95–0.98) 

and 0.47 (0.45–0.49), respectively, in the external validation set.  

 

 

 

 

 

 



 

 

 16 

Table 3. Detection performance of CN-StyleGAN according to target severity. The results are 

presented as the area under the receiver operating characteristic (ROC) curve (AUC), sensitivity, 

specificity, and accuracy with 95% confidence intervals. The threshold was derived using the 

maximum value of Youden’s index for the ROC curve using the tuning dataset. 

Target group Performance of CN-StyleGAN 

Internal validation AUC Sensitivity Specificity Accuracy 

Normal brain CT 
0.91  

(0.88–0.94) 

0.70 

(0.63–0.77) 

0.94  

(0.92–0.97) 

0.85  

(0.82–0.88) 

Urgent brain CT 
0.77 

(0.71–0.83) 

0.52  

(0.36–0.69) 

0.78  

(0.74–0.82) 

0.75 

(0.71–0.79) 

Immediate brain CT 
0.96  

(0.94–0.99) 

0.94 

(0.88–1.00) 

0.78  

(0.74–0.82) 

0.79  

(0.75–0.83) 

Emergency brain CT  

(urgent and 

immediate) 

0.85  

(0.81–0.89) 

0.71  

(0.60–0.82) 

0.78  

(0.74–0.82) 

0.77  

(0.73–0.80) 

External validation  

Normal brain CT 
0.88  

(0.87–0.90) 

0.56 

(0.54–0.59) 

0.94  

(0.93–0.95) 

0.80  

(0.78–0.81) 

Urgent brain CT 
0.81  

(0.79–0.84) 

0.68 

(0.61–0.75) 

0.81  

(0.80–0.83) 

0.80 

(0.79–0.82) 

Immediate brain CT 
0.95  

(0.93–0.96) 

0.93 

(0.90–0.99) 

0.81  

(0.80–0.83) 

0.81  

(0.80–0.82) 

Emergency brain CT  

(urgent and 

immediate) 

0.87  

(0.85–0.89) 

0.78  

(0.74–0.82) 

0.81  

(0.80–0.83) 

0.81  

(0.80–0.82) 
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Fig. 7: Confusion matrices of the classification of brain CTs based on emergency severity for 

assessing the performance of CN-StyleGAN.  
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Fig. 8: ROC curve analysis for assessing the performance of CN-StyleGAN for the detection of 

emergency cases by disease entity. Data are presented as mean AUC values with 95% CI.  
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Fig. 9: Localization of the predicted lesion on emergency brain CT images from patients with 

various diseases. The columns, from the left to right, of each case represent input images, reconstructed 

images, and lesion attention. The attention maps localize anomalies related to secondary brain changes 

such as midline shift or perilesional edema as well as space-occupying brain lesions. a brain mass-like 

lesions, b acute territory infarction, c acute basal ganglionic infarction, d hydrocephalus, e hypoxic 

encephalopathy, f intracerebral hemorrhage (ICH), g subarachnoid hemorrhage (SAH), h subdural 

hemorrhage (SDH), i intraventricular hemorrhage (IVH), and j unruptured aneurysm. 
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Fig. 10: False-positive and false-negative cases predicted by CN-StyleGAN  

a The false-positive cases include anomalous cases that do not require urgent or immediate treatment. 

In each example, the left-sided image represents the original input image, and the right-sided image 

represents the image with predicted abnormal regions. b Most false-negative cases consisted of brain 

lesions with a relatively small volume or a subtle attenuation change (arrows). a, encephalomalacia (old 

infarction); b, intracranial calcification not related to normal aging; c, normal age-related prominent 

sulci; d, motion artifact; e, traumatic subarachnoid hemorrhage; f, subdural hemorrhage; g, early-stage 

acute infarction; and h, small, calcified metastases.
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Fig. 11: Clinical simulation test. a Randomized crossover study design. b Comparison of outcomes in 

subgroups pre- and post-ADA triage (immediate [n = 80], urgent [n = 117], and non-emergency cases 

[n = 1,598]). Data are reported as the median ± IQR. Box plots show the median (center line), first and 

third quartiles (box edges), and whiskers 1.5 times the IQR. Data points outside the whiskers are 

considered outliers. Two-sided p values were calculated using the Wilcoxon signed-rank test for 

comparison between pre- and post-ADA triage, and the Wilcoxon rank-sum test was used for 

comparison between immediate and urgent cases.  

 

Clinical simulation test for emergency case prioritization. Table 4 summarizes the outcomes before 

and after ADA implementation and presents them as median values in seconds (interquartile range 

[IQR]). In the emergency group, the median WT was significantly shorter post-ADA triage by 294 s 

(70.5 s [IQR 168]) than pre-ADA triage (422.5 s [IQR 299]) (p < 0.001). The median TAT was 

significantly faster post-ADA triage by 297.5 s (88.5 s [IQR 179]) than pre-ADA triage (445.0 s [IQR 

298]) (p < 0.001). There was no significant difference in RT between pre-ADA and post-ADA triage 

(29.0 s [IQR 12.5] vs. 30.0 s [IQR 11.0], p = 0.38). As expected, in the non-emergency group, there was 

a significant delay in the WT and TAT when the ADA was implemented. However, the absolute 

difference in the WT and TAT between pre-ADA and post-ADA triage was significantly smaller in the 

non-emergency group (79.3 s [IQR 197.9] and 72.8 s [IQR 202.3]) than in the emergency group (-294.0 

s [IQR 352] and -297.5 s [IQR 347]) (p < 0.001). The RT was significantly shorter post-ADA triage by 

1.5 s (31.00 s [11.5]) than pre-ADA triage (28.00 [11.5]) (p < 0.001). In the false negatives, the median 

WT and TAT were significantly delayed by 71 s and 70.3 s, respectively, post-ADA triage compared 

with pre-ADA triage (358.0 [IQR 291.5] to 449.8 s [IQR 199.3], p = 0.009 and 471.0 s [IQR 205] to 

384.3 [IQR 300.9], respectively; p = 0.02) (Table 5). Fig. 11b shows the significant reduction in the WT 

and TAT in the subgroups of emergency cases. Note that the WT and TAT were significantly shorter in 

the immediate group (350 s [260.3] and 355 s [266.6], respectively) than in the urgent group (245.5 s 

[422.5] and 245.5 s [439.5], respectively) (all p = 0.002).  

Our study proposed an anomaly detection approach based on a deep generative model trained only 

with normal brain CT images from healthy individuals. Although the proposed model did not reach the 

level of the supervised learning-based model performance, our study showed that the ADA has a clear 

advantage in terms of covering a diversity of diseases seen in the ED. In particular, our research 

demonstrated the potential clinical applicability of the ADA as a triage system for patients with 

emergency conditions. 

Our research demonstrated the moderate but consistent performance of the ADA based on a deep 

generative model for internal and external validation datasets. Our external validation dataset represents 
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real-world data that were consecutively collected from ED patients with neurologic symptoms and 

acquired from diverse CT machines and scanning protocols. Our results are supported by the findings 

of previous related studies in terms of the acceptable performance by an anomaly detection model and 

good generalizability. Han et al.34 reported on a GAN-based anomaly detection model with an AUC of 

0.727–0.894 for detecting Alzheimer’s disease and an AUC of 0.921 for detecting brain metastases from 

MRI. Choi et al.9 reported on a deep learning model trained only using normal brain images to identify 

brain abnormalities (AUC of 0.74) in on brain positron emission tomography-CT (PET-CT) images. 

Fujioka et al.10 proposed a GAN-based anomaly detection model with an AUC of 0.936 for 

distinguishing normal tissue from benign and malignant masses based on breast ultrasound imaging. 

These prior studies are valuable in that they demonstrated the capability of anomaly detection models 

in various medical images. However, the previous studies lacked external clinical validation tests; thus, 

whether these models can be generalized to real-world situations cannot be guaranteed. Therefore, 

further evidence with real-world data is warranted. Our study serves this purpose.  

The other critical point of our study is that our research demonstrated the feasibility of our ADA as a 

triage system for brain CT scans in the ED. Our study revealed that ADA implementation significantly 

reduced the WT and TAT in emergency cases. Our results are comparable to those of previous studies 

regarding the clinical feasibility of patient triage by supervised anomaly detection models. Titano et 

al.35 reported that their supervised model potentially raised the alarm 150 times faster than humans for 

urgent cases in brain CT scans. Wood et al. 36 demonstrated that the supervised anomaly detection model 

significantly reduced the mean reporting time for abnormal MRI examinations from 28 days to 14 days 

and from 9 days to 5 days for two hospital networks. Notably, in the detailed subgroup analysis of our 

study, ADA implementation led to a significant reduction in the WT and TAT in immediate (more urgent) 

cases than in urgent cases. This is because ADA-based classification is based on anomaly scores. A 

higher anomaly score for a limited intracranial space likely reflects a correspondent urgency on an 

emergency brain CT scan. Unexpectedly, the increase in the WT and TAT in non-emergency cases was 

significantly smaller than the decrease in the WT and TAT in emergency cases. This finding is likely 

due to the small percentage of emergency cases and shorter RT following ADA implementation in non-

emergency cases. Although the emergency cases led to a radiology workflow delay in the non-

emergency cases, the faster RT in the relatively larger non-emergency cases seemed to offset these 

effects. Given our study design with a clinical simulation test, the shorter RT in the non-emergency 

cases may be due to the change in the radiologists’ confidence or behavior for image interpretation in 

the normal brain CT scans predicted by ADA rather than due to recall bias or a learning effect. However, 

this issue needs further study. 

The unresolved problem for anomaly detection models is the relatively high false-positive and false-
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negative rates. In the randomized controlled study conducted by Titano et al.35, their supervised model 

for the triage of urgent brain CT scans could alert physicians in 50% of critical cases, with a 21% false-

alarm rate. Our model had a high false-negative rate (22.3%) and false-positive rate (19.1%). In our 

clinical simulation test, the ADA implementation caused a significant delay in the median WT and TAT 

in the false negatives compared with the pre-ADA group. Therefore, the triage system with the anomaly 

detection model posed a risk of undermining the timely management of patients with critical CT 

findings. For false positives, a false alarm can reduce physicians’ faith in a model and negatively affect 

emergency patients who need fast treatment. Although these problems could be solved using technical 

advances, this will be an ongoing issue unless the triage algorithm achieves perfect accuracy. Therefore, 

it is important that interpreting radiologists understand the optimization strategy and are prepared to 

deal with false positives or negatives. 

This study has several limitations. First, our current system relies on a single brain CT scan and 

does not refer to prior imaging examinations or clinical information. This could result in mis-triage of 

some less urgent cases as high priority cases. For example, even if a previously diagnosed infarction 

has already been treated, it could be detected as an emergency case. Furthermore, anomaly cases of 

benign conditions (e.g., an arachnoid cyst or encephalomalacia with an old infarction) may also be 

incorrectly classified as emergency conditions. In addition, brain shrinkage is a normal part of the aging 

process but can indicate early-onset neurodegenerative diseases in younger patients. Therefore, 

generating brain images that are the closest to normal without age information is challenging. Age 

information could be a prerequisite for correct classification in our anomaly detection model. These 

problems can be mitigated by training the model on benign conditions and incorporating meta-

information regarding factors that affect clinical diagnosis. Third, we used clinical and radiological 

diagnoses as reference standards. However, many neurological ED cases (e.g., small traumatic 

intracranial hemorrhage, minor stroke, or transient ischemic attack) do not require surgical treatment or 

aggressive intervention because of their low risk of rapid exacerbation. Therefore, this may be an 

unavoidable limitation in an emergency screening cohort study. Nevertheless, further studies using the 

gold standard are warranted to determine the accurate performance of the model. Fourth, this study did 

not reflect the complexity of clinical practice. Multiple factors can influence the results of a clinical 

simulation test, including the case difficulty, queue size of the CT scan, readers’ expertise level, image-

processing time, patient acuity, and interruption by other examinations. Therefore, our results may vary 

with these factors. To address this issue, multicentered and prospective validation studies are warranted.  

In conclusion, we developed an ADA with a deep generative network trained only on normal brain 

CT images from healthy individuals. Our model achieved moderate but consistent performance in 

detecting emergency brain CT scans using internal and external ED screening cohorts. In the clinical 
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simulation test, our study also highlighted the feasibility of the ADA as a triage system to reprioritize 

radiology worklists and accelerate the diagnosis of various emergency conditions.  
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Table 4. Comparison of outcomes pre-ADA and post-ADA triage 

   Pre-ADA Post-ADA 
Difference between pre- and 

post-ADA 
 p valuea p valueb 

Emergency 

(n = 197) 

WT 

Median (IQR) 422.5 (299.0) 70.5 (168.0) -294.0 (352.0) <0.001 <0.001 

Mean (±SD) 436.6 (±192.2) 147.4 (±184.0)    

Min-Max 1–997 1–803    

RT 

Median (IQR) 29.0 (12.5) 30.0 (11.0) 0.0 (13.0) 0.38 0.006 

Mean (±SD) 29.7 (±9.2) 30.3 (±7.7)    

Min-Max 9–76 7–79    

TAT 

Median (IQR) 445.0 (298.0) 88.5 (179.0) -297.5 (347.0) <0.001 <0.001 

Mean (±SD) 457.9 (±195.4) 168.7 (±183.2)    

Min-Max 63–1017 6–847    

Control 

(n = 1,598) 

WT 

Median (IQR) 327.0 (357.0) 364.8 (307.4) 79.3 (197.9) <0.001  

Mean (±SD) 335.1 (±217.1) 366.0 (±192.9)    

Min-Max 1–1053 1–1000    

RT 

Median (IQR) 31.00 (11.5) 28.00 (11.5) -1.5 (14.0) <0.001  

Mean (±SD) 31.2 (±8.9) 29.7 (±9.2)    

Min-Max 9–79 8–79    

TAT 

Median (IQR) 357.0 (352.0) 393.0 (303.4) 72.8 (202.3) <0.001  

Mean (SD) 364.3 (218.0) 393.2 (192.1)    

Min-Max 12–1095 9–1045    

Data are expressed as the mean (SD, standard deviation) or median [interquartile range, IQR] (seconds). All statistical tests were two-sided, and statistical 

significance was set at p = 0.05. aThe Wilcoxon signed-rank test was used for comparison between pre- and post-ADA triage. bThe Wilcoxon rank-sum test was 

used for comparison between emergency and non-emergency cases. 
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Table 5. Comparison of outcomes pre- and post-ADA triage among false negatives and false positives 

   Pre-ADA Post-ADA 
Difference between pre- and 

post-ADA 
p valuea 

False 

Negatives 

(n = 44) 

WT 

Median (IQR) 358.0 (291.5) 449.8 (199.3) 71.0 (145.0) 0.009 

Mean (±SD) 400.5 (±192.2) 445.0 (±150.4)   

min–max 72–922 146–803   

RT 

Median (IQR) 28.8 (10.0) 28.8 (9.4) -0.3 (9.9) 0.68 

Mean (±SD) 29.4 (±8.6) 29.6 (±7.8)   

min–max 9–76 12–62   

TAT 

Median (IQR) 384.3 (300.9) 471.0 (205.0) 70.3 (143.6) 0.02 

Mean (±SD) 421.7 (±196.2) 464.5 (±150.9)   

min–max 82–951 155–847   

False 

Positives 

(n = 305) 

WT 

Median (IQR) 357.0 (366.0) 101.0 (104.0) -220.5 (360.5) <0.001 

Mean (±SD) 342.9 (±220.4) 111.1 (±76.8)   

min–max 1–957 1–449   

RT 

Median (IQR) 32.5 (11.5) 35.5 (13.0) 2.5 (14.5) <0.001 

Mean (±SD) 33.6 (±9.1) 36.6 (±9.6)   

min–max 9–79 9–79   

TAT 

Median (IQR) 378.0 (357.5) 134.50 (111.5) -223.5 (361.5) <0.001 

Mean (SD) 374.0 (±220.8) 143.7 (±78.1)   

min–max 12–1007 9–508   

Data are expressed as the mean (SD, standard deviation) or median [interquartile range, IQR] (seconds). All statistical tests were two-sided, and statistical 

significance was set at p = 0.05. aThe Wilcoxon signed-rank test was used for comparison between pre- and post-ADA triage
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영문요약 

Triage is essential for the early diagnosis and reporting of neurologic emergencies. Herein, we report the 

development of an anomaly detection algorithm (ADA) with a deep generative model trained on brain 

computed tomography (CT) images of healthy individuals that reprioritizes radiology worklists and 

provides lesion attention maps for brain CT images with critical findings. In the internal and external 

validation datasets, the ADA achieved area under the curve values (95% confidence interval) of 0.85 (0.81–

0.89) and 0.87 (0.85–0.89), respectively, for detecting emergency cases. In a clinical simulation test of 

emergency cohorts, the median wait time was significantly shorter post-ADA triage than pre-ADA triage 

by 294 s (422.5 s [interquartile range, IQR 299] to 70.5 s [IQR 168]), and the median radiology report 

turnaround time was significantly faster post-ADA triage than pre-ADA triage by 297.5 s (445.0 s [IQR 

298] to 88.5 s [IQR 179]) (all p < 0.001). 
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