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의료인공지능에 대한 흥미를 갖고 MI2RL에서 석사과정을 시작한지 어느덧 2
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종준, 최창용 선생님, 동기로서 석사 과정을 같이 밟으며 힘이 되어 주신 박현

정, 오홍민 선생님께 감사의 인사를 전합니다. 

제가 좋은 결과를 얻을 수 있었던 것은 좋은 선배님들과 후배님들의 도움이 

컸습니다. 특히, 장령우, 김성철, 김인환, 조성만 선배님들의 선도(善導)를 통
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말을 전합니다. 



i 

Abstract 

The deep learning technique has been used in a wide range of fields, with impressive results. 

However, lack of training data, performance degradation due to modality or domain 

differences, higher-definition images like radiographs and computed tomography (CT) scans, 

and the robustness of other medical centers, etc., there are still difficulties in applying deep 

learning in the medical domain. To address these issues, inductive transfer learning of 

representation learning, a study that skillfully utilizes the features derived from the network, 

has been intensively researched: sequential transfer learning and multi-task learning. In this 

study, three experiments have been performed to confirm how representation learning using 

inductive transfer learning affects medical domains: ‘Application of deep representation on 

pediatric diagnosis’, ‘Application of deep representation on brain hemorrhage diagnosis’, and 

‘Application of deep representation on low-dose CT denoising task’. In the first study, 

sequential transfer learning was applied for performance improvement. We constructed class-

balanced pediatric radiographs datasets, PedXnets using labels based on radiographic views, 

and developed their supervised representations. We validated the effects of the representation 

learning through pediatric downstream tasks including fracture classification and bone age 

assessment. As a result, the transfer learning from Model-PedXnets showed improved 

quantitative performances compared to those of the Model-Baseline. Model-PedXnets had 

equivalent and in some cases even improved performance than Model-ImageNet. In particular, 

Model-PedXnets focused on the most meaningful regions. In the second study, multi-task 

learning was applied for robustness. We proposed a supervised multi-task aiding 

representation transfer learning network (SMART-Net) for the diagnosis of intracranial 

hemorrhage (ICH). The proposed framework consists of upstream and downstream 

components. In the upstream, a weight-shared encoder of the model is trained as a robust 

feature extractor that captures global features by performing slice-level multi-pretext tasks. In 

the downstream, the transfer learning was conducted with a pre-trained encoder and 3D 

operator for volume-level tasks. Experimental results based on four test sets indicate that 

SMART-Net has better robustness and performance in terms of volume-level ICH 

classification and segmentation over previous methods. In the third study, multi-task learning 

was applied for the stabilization of discriminator learning. We propose a multi-task 
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discriminator based generative adversarial network (MTD-GAN) simultaneously conducting 

three vision tasks (classification, segmentation, and reconstruction) in a discriminator. To 

stabilize GAN training, we introduce two novel loss functions termed non-difference 

suppression (NDS) loss and reconstruction consistency (RC) loss. Furthermore, we take a fast 

Fourier transform with convolution block (FFT-Conv Block) in the generator to make use of 

both high- and low-frequency features. Our model has been evaluated by pixel-space and 

feature-space based metrics in the head and neck LDCT denoising task, and results show 

outperformance quantitatively and qualitatively than the state-of-the-art denoising methods. 

All three studies confirmed that representation learning, which includes sequential transfer 

learning and multi-task learning, could enhance performance, extract semantic information, 

and make models robust to external data in medical domains. Instead of simply evaluating the 

performance of models by training scratch models, representation learning should be included 

in the future application of artificial intelligence to medical domains. 



iii 

Contents 

Abstract ··························································································· i 

Contents ·························································································· iii 

Contents of Tables ·············································································· iv 

Contents of Figures ·············································································· v 

Introduction ······················································································ 1 

A. Application of deep representation learning to pediatric diagnosis ··············· 3 

 Background and Objective ······················································· 3 

 Materials and Methods ···························································· 4 

 Experiments and Results ························································· 8 

 Discussion ········································································ 13 

 Summary ·········································································· 14 

B. Application of deep representation learning to brain hemorrhage diagnosis ·· 15 

1. Background and Objective ····················································· 15 

2. Materials and Methods ·························································· 17 

3. Experiments and Results ······················································· 21 

4. Discussion ········································································ 29 

5. Summary ·········································································· 30 

C. Application of deep representation learning to low-dose CT denoising task ·· 31 

1. Background and Objective ····················································· 31 

2. Materials and Methods ·························································· 32 

3. Experiments and Results ······················································· 36 

4. Discussion ········································································ 39 

5. Summary ·········································································· 40 

Conclusion ······················································································ 40 

References ······················································································ 41 

Abstract (with Korean) ······································································· 45 

 



iv 

Contents of Tables 

Table 1. The performance comparisons of radiographic views recognition task as an upstream 

task ......................................................................................................................................... 10 

Table 2. The performance comparisons of the fracture classification task ............................ 11 

Table 3. The performance comparisons of bone age assessment ........................................... 12 

Table 4. Patient demographic information and medical properties in four ICH datasets ....... 18 

Table 5. Comparisons of up and downstream performance according to consistency loss in the 

internal test set ....................................................................................................................... 25 

Table 6. Quantitative results of volume-level target classification and segmentation tasks for a 

comparative analysis with previous methods on four test sets ............................................... 27 

Table 7. Quantitative results of volume-level target classification and segmentation tasks for a 

comparative analysis with ablation studies on four test sets .................................................. 29 

Table 8. Patient demographic information and medical characteristics in the LDCT denoising 

dataset .................................................................................................................................... 32 

Table 9. Quantitative results for a comparative analysis with previous methods .................. 38 

Table 10. Quantitative results for a comparative analysis in ablation study .......................... 38 

 



v 

Contents of Figures 

Figure 1. Flow chart for classifying suggested radiographic views in a real-world medical 

radiography dataset .................................................................................................................. 5 

Figure 2. Overview of the labeling procedure for radiographic images for PedXnets ............. 7 

Figure 3. Illustration of the Model-PedXnets method .............................................................. 8 

Figure 4. Plots of Model-PedXnet model’s Grad-CAM activation maps of radiographic views 

recognition task ...................................................................................................................... 10 

Figure 5. Plots of Model-PedXnets’ t-SNE maps of radiographic views recognition task .... 11 

Figure 6. Comparisons of activation maps in the fracture downstream task ......................... 12 

Figure 7. Comparisons of activation maps in the bone age assessment ................................. 13 

Figure 8. Histograms of four datasets are shown according to the quantity of ICH .............. 16 

Figure 9. Overview properties of ICH patients in four independent ICH datasets ................ 17 

Figure 10. Schematic overview of the SMART-Net framework ............................................ 19 

Figure 11. Comparisons of the pre-trained encoder activation map according to multi-pretext 

task combinations and the previous representation learning approaches ............................... 24 

Figure 12. Illustrations of the output mismatches caused by the target-specific multi-head 

structure and of the effects of the consistency loss ................................................................ 25 

Figure 13. Comparison of volume-level segmentation results for severe and mild ICH cases, 

and two normal cases ............................................................................................................. 28 

Figure 14. Comparisons of false-positive reduction performance on the normal cases in 

volume-level segmentation using box plots on four test sets. ................................................ 28 

Figure 15. Schematic overview of the MTD-GAN framework ............................................. 33 

Figure 16. A concept of our NDS loss to LSGAN loss in segmentation task ........................ 35 

Figure 17. The denoising results of previous methods ........................................................... 37 

Figure 18. The denoising results in the ablation study ........................................................... 39 



1 

Introduction 

Background 

In artificial intelligence (AI) technologies, deep learning has achieved an unprecedented 

performance in a variety of computer vision tasks such as image classification, object detection, 

semantic segmentation, image reconstruction, visual question answering, etc, showing 

remarkable performances. Especially, representation learning is an important aspect of deep 

learning which from raw data automatically discovers useful feature patterns such as those that 

are interpretable, incorporate latent representations, or can be used for transfer learning [1]. In 

general, the good representation used for transfer learning has some advantages [2]: 

⚫ Reduces the variance of the test results: According to Erhan et al. [3], the variance of the 

predictions of the pre-trained model was significantly low. This affected the test results 

variance, which means improved reproducibility. 

⚫ Relieve the issue of insufficient training data: Transfer learning requires less training data 

for new deep learning models and saves development time of networks when using pre-

trained representation as the majority of the model has already been learned.  

⚫ Improved performances and robust models: The entire training process is made more 

efficient by leveraging previously acquired knowledge. To solve a particular target task by 

fine-tuning the representation, researchers also can employ a variant approach considering 

multiple models. The sharing of knowledge between different algorithms can result in a 

more accurate and generalized model without overfitting. 

These promising merits drew a lot of attention from the medical domain, which has a lot of 

issues such as a lack of training data, the high costs of processing higher-definition images like 

radiographs and CT scans, and performance degradation when data distribution shifts caused 

by image modalities, medical centers, and data collection period. However, any machine 

learning model's performance is highly dependent on the learned representations. According 

to Ma et al. [4], it is important to understand when and why the pre-trained representation 

works in a particular target task because the pre-trained representation is sometimes helpful 

but often harmful. To transfer better representation, inductive transfer learning that skillfully 

handles the features extracted from the raw data has been actively studied: sequential transfer 

learning and multi-task learning. 
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Sequential transfer learning 

The objective of sequential transfer learning (STL) is to enhance learning in the target task by 

transferring pre-trained knowledge from the source task. The initial phase is a pre-training 

phase in which general representations are learned for a large scale of source tasks. The second 

phase involves the application of the acquired knowledge to the intended task. On a variety of 

natural language processing (NLP) tasks, approaches based on these techniques have achieved 

state-of-the-art performance. Pre-trained language representations such as word2vec, GloVe, 

GPT, and BERT trained on a large unlabeled text corpus are still utilized as powerful 

representations and are frequently employed to increase performance in NLP applications [5]. 

There are two types of self-supervised learning (SSL) in the vision domain [6]: Pretext learning 

creates representations using pseudo-labels, or labels that are automatically generated 

depending on the properties of the dataset. It comprises predicting the degree of rotation, filling 

in a missing portion of an image, coloring a grayscale image, and predicting the relative 

position of a patch, among other operations. Contrastive learning, including MOCO and 

SimCLR, learns representations by discriminating between augmented versions of images 

using pseudo labels and positive or negative image pairings. More recently, BYOL, which 

does not employ negative image pairs, has been developed. 

 

Multi-task learning 

Multi-task learning (MTL) aims to learn multiple distinct tasks simultaneously by maximizing 

the generalization performance of all tasks using comprehensive information. This strategy 

has resulted in an average performance improvement and is advantageous for activities that 

have similar features [7]. Nevertheless, if multi-tasks are unrelated and one group of related 

tasks dominates the training process, individual tasks may suffer negative transfer in which 

the multitask model's predictions are inferior to those of the single-task model [8]. To solve 

the negative transfer, the studies [9, 10] that regulated the equilibrium between multitasking 

were conducted beforehand. In contrast, previous studies [11-13] focused on task affinity, or 

which tasks should be performed together. 
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Objectives 

In this study, three experiments were conducted to confirm how representation learning, 

especially inductive transfer learning including sequential transfer learning and multi-task 

learning, affects medical domains:  

A. Application of deep representation on pediatric diagnosis 

B. Application of deep representation on brain hemorrhage diagnosis 

C. Application of deep representation on low-dose CT denoising task 

 

A. Application of deep representation learning to pediatric diagnosis 

 Background and Objective 

Deep learning technology has often been applied to pediatric medical domains for solving 

various tasks and has shown excellent research results, such as in disease classification, 

segmentation, and bone age assessment. However, there are still various obstacles to the real-

world clinical application of deep learning models for pediatric tasks despite the impressive 

achievements of previous studies. One of them is that most pediatric deep learning studies 

heavily rely on ImageNet pre-trained representations. In general, the ImageNet pre-trained 

models were often used to relieve the issue of insufficient datasets in pediatric tasks, but 

recently it has emerged that the pre-trained representation of ImageNet might not be suitable 

for the medical domain due to a negative transfer by domain difference. To be specific, the 

ImageNet is a large-scale natural image dataset, so it has three RGB channel spaces. In contrast, 

medical images such as radiographs, computed tomography (CT), and magnetic resonance 

images (MRI) have one gray channel space. In addition, medical images typically have a 

higher resolution than nature images. Thus, these different characteristics can cause a large 

domain shift while being transferred [14]. According to Ke et al. [15], for a large dataset of 

chest radiographs, ImageNet pre-trained representations showed positive transfer on disease 

classification task in most CNN models, however, a few models, including the InceptionV3 

[16], have either had a negative transfer. In addition, ImageNet pre-trained models often tend 

to focus sensitively to edge or minor local variations in texture rather than the region of interest 

(ROI). Thus, it is difficult to interpret how the pre-trained models by ImageNet improved the 

performances in the medical domain. These results indicate that we need to verify the 
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effectiveness of ImageNet pre-trained representation on various medical tasks, and 

representation learning studies suitable for the medical domain have been developed as the 

transfer learning with pre-trained representation by ImageNet may be limited [17, 18]. In this 

study, we first constructed class-balanced pediatric radiographs datasets, PedXnets using 

labels based on radiographic views. Secondly, we conducted the radiographic views 

recognition task as a pretext task for the development of their supervised representations. Third, 

the pre-trained representation was used to improve the target task's performance. The Model-

PedXnets (i.e., models using the PedXnet pre-trained representation) consist of upstream and 

downstream tasks like sequential transfer learning. We validated the transferability and 

positive transfer of our method through pediatric tasks including fracture classification and 

bone age assessment. The representations of radiographic views using the PedXnets were 

compared with Baseline-Model (i.e., a trained model with random initialization without pre-

trained representations) and Model-ImageNet (i.e., a model using the ImageNet pre-trained 

representation). In addition, an ablation study was also performed to compare the effects of 

radiographic view representation in small-scale datasets. 

 

 Materials and Methods 

2.1 Upstream dataset 

We retrospectively collected a total of 2,598,404 pediatric radiographs aged from 0 to 18 years 

in the Asan Medical Center (AMC) between Jan 1997 and Nov 2018. For reflection on the 

actual frequency of occurrence in the medical center, we divided the original dataset into 

training and validation sets based on the reference date, Jul 2018. The validation set in the raw 

original dataset consists of a total of 81,131 radiographs collected over the period from Jul 

2018 to Dec 2018. The training dataset in the raw original dataset is composed of the remaining 

2,499,598 radiographs. The raw original dataset had a severe imbalance distribution by 

prescription code. Therefore, when applying our proposed radiographic views labeling which 

are three types (PedXnet-7C, PedXnet-30C, and PedXnet-68C) according to the degree of 

anatomy, the class imbalance became highly severe. To address this issue, we under-sampled 

the data according to the least frequent class and matched the total number of training images 

equally for a fair comparison between three types of PedXnet datasets (see Figure 1). 
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Figure 1. Flow chart for classifying suggested radiographic views in a real-world medical radiography 

dataset using an upstream dataset. To create balanced datasets for each sort of radiographic view labeling, 

sampling was carried out individually. The fixed dataset in the upstream validation set had the same 

radiographic views labeling added to it after a reference date (July 2018), which changed the class-wise 

mean and variance for each labeling type. The total number of data is N. 

 

2.2 Downstream dataset 

2.2.1 Fracture downstream task dataset 

To build a fracture task dataset for the downstream, we retrospectively collected 1,772 

pediatric radiographs over the period from Jul 2018 to Dec 2018 at Asan Medical Center. The 

number of fracture cases is 1,010 radiographs and the normal cases are 762 radiographs. The 

fracture and normal cases were confirmed based on the consensus of two radiologists. We 

randomly divided the dataset into training, fine-tuning, and validation sets with an 8:1:1 ratio. 

The fracture task dataset consists of a variety of views of pediatric radiographs including Ankle, 

Lower leg, Knee, Femur, Shoulder, Humerus, Elbow, Forearm, and Hand. 

 

2.2.2 Bone age assessment (BAA) downstream task dataset 

The BAA dataset was released in RSNA Pediatric Bone Age Challenge (2017). The organizers 
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had provided lists of training, fine-tuning, and validation sets. The dataset has gender 

information, and the number of training radiographs is 12,611, that of fine-tuning radiographs 

is 1,425, and that of validation radiographs is 200. According to Halabi et al. [19], the training 

and fine-tuning sets had similar age distributions with an average of 127.321 and 127.156 

months, and the validation set had an age distribution with an average of 132.096 months. 

Radiographs for the training and fine-tuning sets were obtained from Children’s Hospital 

Colorado (Aurora, Colo) and Lucile Packard Children’s Hospital at Stanford. The pediatric 

radiographs for the validation set were collected from Lucile Packard Children’s Hospital. The 

Greulich and Pyle standard method (G-P method) [20] was used by reviewers to determine the 

ground truth bone age. 

 

2.3 Sequential transfer learning using PedXnet 

2.3.1 Radiographic views recognition as upstream tasks 

For radiographic views labeling for PedXnets, we benchmarked ImageNet which has a 

hierarchical structure and is a class-balanced dataset [21]. As shown in Figure 1, a hierarchical 

structure was constructed using anatomical information and the radiographic views 

information in a large-scale original pediatric dataset. In detail, we first divided the pediatric 

radiograph dataset into seven major anatomic classes of the human body including the head, 

chest, upper extremity, abdomen, pelvis, spine, and lower extremity with all pediatric 

radiographs for construction of the PedXnet-7C dataset.  Furthermore, we subdivided the 

seven classes into 30 classes based on the detailed anatomic areas of radiographs for the 

composition of the PedXnet-30C dataset. Similarly, the 68 classes were also subdivided using 

radiographic protocols for the configuration of the PedXnet-68C dataset. We performed 

classification tasks for radiographic views as upstream tasks using our PedXnet-7C, PedXnet-

30C, and PedXnet-68C in order to allow the model to capture representations of radiographic 

views (see Figure 2-(a)). For radiographic views classification tasks, InceptionV3 which is a 

widely used CNN architecture in studying medical problems (e.g., detecting fractures and bone 

age assessment tasks) has been trained to classify pediatric radiographs into each 

corresponding radiographic views class. The model has 11 convolution layers of 1×1, 1×3, and 

1×5 kernels, and convolution blocks are applied along with the max-pooling layer for down 
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sampling. All convolutional layers include batch normalization techniques and rectified linear 

unit (ReLU) layers. In the upstream tasks, predictions are conducted for target classes with a 

fully connected layer and a softmax function. We redesigned the last fully connected layer's 

output channels in accordance with the number of classes of each upstream task. 

 

 

Figure 2. Overview of the labeling procedure for radiographic images for PedXnets. The lower 

extremities class in the 7 class, for example, can be further subdivided into the hip, femur, knee, lower 

leg, ankle, foot, and toe classes in the 30 class. Based on the radiograph protocol code, they may be 

separated into the following subclasses: Foot AP, Foot Calcaneus, Foot Hindfoot, Foot Lateral, and Foot 

Oblique in the 68 class. Note: KUB, kidney, ureter, and bladder; PNS, paranasal sinus; SI, sacroiliac. 

PA, posteroanterior; AP, anteroposterior. 

 

2.3.2 Applying pre-trained representation to two pediatric tasks as downstream 

tasks 

To assess whether our pre-trained radiographic view representations by PedXnets benefit 

applications for medical problems, we conduct two pediatric downstream tasks (see Figure 2-

(b)). It is important to diagnose pediatric fractures accurately because they will affect the child 

in his or her growth, and in severe cases, they cause disabilities [22, 23]. A fracture occurs 

mainly in the upper and lower limbs of the body but anatomically anywhere and frequently 

occurs during childhood. Therefore, the model should be able to catch fracture features 



8 

robustly in multi-view of radiographs. In the fracture classification task, the models should 

extract general features of fracture in the upper and lower extremities of radiographs. As bone 

age is an effective indicator for diagnosing various diseases and determining the timing of 

treatment, the accuracy of bone age assessment is very important [19]. The aim of bone age 

assessment is to evaluate growth and maturity and to diagnose and manage pediatric disorders. 

In the bone age assessment task, hand radiographs are mainly used, and the model should 

extract detailed features from the bones of the wrist, hand, and finger. In this study, we solve 

these two issues by simply using the pre-trained representations. 

 

 

Figure 3. Illustration of the Model-PedXnets method. Upstream and downstream tasks make up the 

framework. In upstream tasks, radiographic views recognition of pediatric radiographs was conducted 

to create pre-trained models. Transfer learning using the weights to address two medical issues, such as 

the categorization of general fractures and the prediction of bone age. 

 

 Experiments and Results 

Metrics. To validate the Model-PedXnets representation in the up and downstream tasks, we 

employed receiver operating characteristic (ROC), the area under the ROC curve (AUC), F1-

score (F1), accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive values 

(PPV), and negative predictive values (NPV), mean absolute error (MAE), and mean square 

error (MSE) for quantitative evaluations [24] of multi-class classification in upstream tasks. 
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We visualized the Model-PedXnets representations with gradient-weighted class activation 

mapping (Grad-CAM) [25] and channel-wise mean activation where the last convolution 

layer's features of InceptionV3 were averaged channel-wise, normalized with sigmoid 

activation, and subsequently interpolated to match the input resolution like Zhou et al. [26]. 

Also, t-distributed stochastic neighbor embedding (t-SNE) [27] is used according to the 

anatomical hierarchy of radiographic views. The comparisons of Model-Baseline, Model-

ImageNet, and Model-PedXnets in downstream tasks are performed using DeLong’s ROC 

comparison [28] and the paired t-test, respectively. The statistical significance level is set at 

the p-value of 0.05. 

Implementation details. For each of the downstream tasks, the same training settings have 

been applied to Model-Baseline, Model-ImageNet, Model-PedXnet-7C, Model-PedXnet-30C, 

and Model-PedXnet-68C for fair comparisons. 

1) Preprocessing: For each image, min-max normalization with 0.5% clipping of upper and 

lower bounds was performed to suppress the effect of the L/R mark in radiographs and remove 

the outlier pixel values. Due to the limitation of GPU resources, all images were resized down 

into 512×512 by bi-cubic interpolation with the aspect ratio of each original image. In 

downstream tasks, contrast limited adaptive histogram equalization (CLAHE) [29] is applied 

to emphasize the bone contrast additionally. 

2) Augmentation: There are various radiographic views protocols depending on the age and 

body size. Thus, we used strong image augmentations to alleviate the heterogeneity of 

pediatric radiographs and made the model robust for pediatric radiograph protocols applicable 

to various anatomic locations. We adopted eight augmentation methods from Albumentation 

[30] as follows: ShiftScaleRotate, HorizontalFlip, RandomBrightness, RandomContrast, 

RandomGamma, GaussNoise, Sharpen, and RandomBlur.  

3) Setting: The batch size of upstream tasks was 60 and that of downstream tasks was 20. Each 

model is initialized by a uniform Xavier and trained until a total of 500 epochs with an Adam 

optimizer, using a learning rate of 1e-4 with a warm-up of 5 epochs, a weight decay of 5e-4, 

and betas of (0.9, 0.999). The learning rate was reduced during the training following the 

polynomial learning rate schedule.  
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3.1 Upstream results of supervised radiographic view representation task 

As shown in Table 1, Model-PedXnet-7C, Model-PedXnet-30C, and Model-PedXnet-6

8C, all have sufficiently satisfactory performances in quantitatively (F1>0.78, Accurac

y>0.90, Precision>0.84, Recall>0.79). Figure 4 indicates Model-PedXnet-7C’s activatio

n maps that were visualized using Grad-CAM. The Model-PedXnet-7C was activated 

in the ROI and the activation maps demonstrate that Model-PedXnet-7C can capture 

clinically meaningful features. In addition, as shown in Figure 5, it can be seen that 

the intermediate features of Model-PedXnets are well clustered in the t-SNE map usi

ng the embedded features. These upstream results indicate that Model-PedXnets learne

d representation without overfitting. Therefore, the model weights of upstream tasks c

an be applied to downstream tasks. 

 

Table 1. The performance comparisons of radiographic views recognition task as an upstream task. 

Upstream validation set F1 score Accuracy Precision Recall 

Model-PedXnet-7C (N=73,448) 0.892 0.911 0.915 0.874 

Model-PedXnet-30C (N=63,334) 0.823 0.952 0.933 0.797 

Model-PedXnet-68C (N=46,183) 0.785 0.904 0.847 0.798 

 

 
Figure 4. Plots of Model-PedXnet model’s Grad-CAM activation maps of radiographic views 

recognition task as an upstream task with independent validation sets according to each labeling method. 
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Figure 5. Plots of Model-PedXnets’ t-SNE maps of radiographic views recognition task as an upstream 

task with independent validation sets according to each labeling method. Refer to Supplemental Table 

1 for each class detail for upstream validation sets. 

 

3.2 Downstream task results for fracture classification task 

When comparing Model-PedXnets and Model-Baseline, the AUC scores of Model-PedXnets 

are remarkably improved as can be seen in Table 2. Although Model-ImageNet achieved the 

highest AUC 0.880 and SEN 0.853 performances, Model-PedXnet-7C achieved the highest 

performance with 0.843 in F1, 0.827 in ACC, and 0.893 in PPV. We visualized the features of 

the last convolution layer of Model-Baseline, Model-PedXnet-7C, and Model-ImageNet using 

the Grad-CAM to confirm the representations (see Figure 6). Model-PedXnet-7C focused 

exactly where the broken areas were in the two radiographs. 

 

Table 2. The performance comparisons of the fracture classification task. 

Network AUC F1 ACC SEN SPE PPV NPV 

Model-Baseline 0.795 0.758 0.732 0.721 0.747 0.798 0.659 

Model-PedXnet-7C 0.877** 0.843 0.827 0.798 0.867 0.893 0.756 

Model-PedXnet-30C 0.861* 0.824 0.799 0.808 0.787 0.840 0.747 

Model-PedXnet-68C 0.865* 0.798 0.782 0.740 0.880 0.865 0.700 

Model-ImageNet 0.880** 0.790 0.810 0.853 0.778 0.735 0.880 

Note: *, p<0.05, **, p<0.005. DeLong’s test method was adopted for pairwise ROC comparison 

between the baseline and each model. 



12 

 
Figure 6. Comparisons of activation maps in the intermediate layer of Model-PedXnet, Model-Baseline, 

and Model-ImageNet models using Grad-CAM in the fracture downstream task. 

 

3.3 Downstream task results for bone age assessment task 

As shown in Table 3, Model-PedXnet-7C achieved the best performance of 5.245 in MSE, 

42.857 in MAE, and 0.974 in 𝑅2 . Model-PedXnet-7C and Model-PedXnet-30C show 

performance improvements in MAE compared to the baseline model. Figure 7 indicates that 

Model-PedXnet-7C captured the most important regions to predict bone age such as carpus 

and metacarpophalangeal joints, most intensively. 

 

Table 3. The performance comparisons of bone age assessment. 

Network MAE (Month) MSE (Month) 𝑅2 Score 

Model-Baseline 5.645 52.694 0.968 

Model-PedXnet-7C 5.245 42.857 0.974 

Model-PedXnet-30C 5.567 49.347 0.971 

Model-PedXnet-68C 5.851 55.082 0.970 

Model-ImageNet 5.308 47.630 0.971 

Note: *, p<0.05, **, p<0.005, MAE, mean absolute error, MSE, mean square error. paired t-test method 

was adopted for MAE comparison between the baseline and each model, but there is no significance. 
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Figure 7. Comparisons of activation maps in the intermediate layer of Model-PedXnet, Model-Baseline, 

and Model-ImageNet using channel-wise mean activation map in the BAA. The sample in the first row 

is 152 months old, and the sample in the second row is 167 months old. 

 

 Discussion 

Most of the previous medical tasks mainly use transfer learning due to the scarcity of cases. 

Especially most pediatric studies rely on ImageNet representation. However, it is still debated 

whether the ImageNet representation is suitable for the medical domain [36]. In this study, we 

constructed a class-balanced pediatric dataset, PedXnets, and proposed our Model-PedXnets 

framework to reap the benefits of transfer learning in medical domains. In Tables 2 and 3, the 

Model-PedXnets showed superior performance improvements by a large margin as compared 

to Model-Baseline in downstream pediatric tasks including fracture classification and bone 

age assessment. Even though PedXnets has smaller-scale datasets than ImageNet, Model-

PedXnet showed equal and in some cases even superior performance than Model-ImageNet. 

As shown in Figures 6 and 7, performance gaps between Model-ImageNet and Model-

PedXnet were noticeably different in activation map visualization. The Model-ImageNet 

focused on some minor local context, while the Model-PedXnet-7C focused more on 

medically meaningful ROI. In addition, comparing the ablation studies' results amongst 

Model-PedXnets, it was found that for radiographic view representation made with fewer 

classes of datasets, Model-PedXnet-7C, was more effective than other Model-PedXnets. It can 

be interpreted that pediatric radiographs include views of various sizes according to age and 

excessive divided classes based on the radiographs' protocol can lead to label noise because 



14 

there were a lot of overlapping regions. For example, the chest AP view images were similar 

to abdomen AP views in newborns and infants. Therefore, the label noises made the network 

miss meaningful features and resulted in a negative transfer issue, which decreased the transfer 

learning effects. Despite the improved performance, our method has some limitations. First, 

as our proposed methodology can rely on the backbone network and pre-processing, it can 

lead to sufficiently different results depending on different backbone networks and pre-

processing. Second, as shown in Figure 2, we performed excessive random under-sampling 

in the raw original dataset to build class-balanced datasets according to the anatomical 

hierarchy of radiographic views. This has reduced the total number of training data and there 

might be a possibility that the total number of data was insufficient compared to ImageNet, so 

it did not show an appropriate effect. Third, the labeling of radiographic views may vary 

depending on the radiologist, which could change the results since our proposed method is of 

a supervised manner based on subjective labeling according to an anatomical or radiographic 

perspective. 

 

 Summary 

In this study, we introduced a supervised manner of medical representation learning for 

pediatric tasks with radiographic view labels. In the upstream task, we designed the class-

balanced pediatric radiograph datasets (PedXnets) by radiographic views labels and conducted 

representation learning for pediatric problems through a radiographic-views classification task 

on the PedXnets in a supervised manner. According to two downstream evaluation results, the 

representation by seven major anatomical view labels was the most effective and the transfer 

effect of Model-PedXnet-7C was positive in both pediatric downstream tasks including 

fracture classification and bone age assessment tasks. Model-PedXnets showed superior 

results by a large margin compared to Model-Baseline. Model-PedXnets even showed that 

were results equivalent and in some cases better than Model-ImageNet, even though PedXnets 

were smaller datasets than ImageNet. In addition, the proposed representation learning 

allowed networks to capture more semantic features in the ROI of radiographs. Our study 

could be helpful for medical domains, particularly for pediatric radiographs research for which 

the data is difficult to obtain. 
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B. Application of deep representation learning to brain hemorrhage diagnosis [31] 

1. Background and Objective 

With the recent development of deep learning, the classification and segmentation tasks using 

computer-aided diagnosis (CAD) in non-contrast head computed tomography (NCCT) for 

intracranial hemorrhage (ICH) have become popular in emergency medical care. However, a 

few challenges remain: 

ICH's heterogeneity makes training difficult. ICH can arise anywhere in the skull and have 

numerous subtypes. ICH can be clear to dim and thick to diffused and may lessen over time 

[32]. Real emergency medical centers witness a lot of tiny ICHs (see Figure 8). Even 

competent radiologists can struggle with little ICHs, therefore they consider all of their 

properties. To overcome these variations, CAD models must be trained with many ICH 

features in mind, as radiologists do. 

High sensitivity and specificity are required. Most ICH models are sensitive but lack 

specificity. A deep learning-based diagnostic model for triage must have good sensitivity and 

specificity. Even a slight traumatic brain hemorrhage overlooked (false negative) can worsen 

disease severity and induce neurologic impairment. Due to limited resources in the emergency 

department, false positives can delay diagnostic workflows for more critical patients [33].  

Volume predictions are costly. 3D volumetric CT scans including NCCT demand a big GPU 

memory. Previous studies avoided this issue by using 3D patch- or 2D slice-based approaches. 

3D patch-based captures more spatial information than 2D slice-based. However, the outcomes 

can vary greatly depending on patch size. In particular, excessively small patch sizes cause the 

network to ignore spatial information in the entire area [34]. The 2D slice-based method uses 

fewer GPU resources than the 3D patch-based method, allowing the complete image to be 

utilized and readily expanded to 3D by stacking slice-level features or processing the stacked 

features by a 3D operator. However, the results can seem strange because it renders 3D through 

simply stacking. 

There is an external data vulnerability. If the training data doesn't adequately reflect the task 

domain, the trained model may perform poorly on external data. Voter et al. [35] highlighted 

that the type and amount of ICH in their external test dataset could affect performance. This is 
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a common problem, especially in medical deep learning, and recent research has focused on 

generalizability and robustness and should adopt the learning approach suitable not only for 

internal but also external data for generalizability. For real-world clinical applications, the 

network must be robust to disease-specific data distributions, and external validation tests are 

needed to ensure network robustness. In this study, we proposed a supervised multi-task aiding 

representation transfer learning network (SMART-Net) for ICH to overcome these challenges. 

The proposed framework consists of the up- stream and downstream components. In the 

upstream, a weight-shared encoder of the model is trained as a robust feature extractor that 

captures global features by performing slice-level multi-pretext tasks (classification, 

segmentation, and reconstruction). We added a consistency loss to regularize discrepancies 

between classification and segmentation heads, which improved representation and 

transferability. In the downstream, the transfer learning was conducted with a pre-trained 

encoder and 3D operator (classifier or segmenter) for volume-level tasks. Excessive ablation 

studies were conducted, and the SMART-Net was developed with optimal multi-pretext task 

combinations and a 3D operator. Using four test sets (one internal and two external test sets 

that reflect a natural incidence of ICH, and one public test set with a relatively small volume 

of ICH cases), we compared our SMART-Net at the volume level with the previous state-of-

the-art ICH classification methods, ICH segmentation methods, and representation learning 

methods. 

 

 

Figure 8. Histograms of four datasets are shown according to the quantity of ICH. Above the graphs, 

samples corresponding to each severity and subtype class are presented. (Note: AMC, Asan Medical 

Center; CPH, cerebral parenchymal hemorrhage; IVH, intraventricular hemorrhage; EDH, epidural 

hemorrhage; SDH, subdural hemorrhage; SAH, subarachnoid hemorrhage) 
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Figure 9. Overview properties of ICH patients in four independent ICH datasets. (Left) box plots of the 

bleeding volume for ICH patients in each dataset, (right) violin plots of the hemorrhage intensity for 

ICH patients in each dataset. 

 

2. Materials and Methods 

2.1 Dataset 

The AMC training dataset CT images were gathered by searching the AMC database for 

individuals who had successive NCCT exams from September 2009 to April 2017. In the AMC 

training dataset, CT scans are 512×512 pixels with depths between [28, 50]. The AMC training 

dataset included 782 ICH patients and 760 healthy controls based on CT scan clinical 

radiology reports. We used the hold-out method to segregate 5% of the AMC training dataset. 

Table 4 summarizes ICH datasets. There was a class imbalance in the five ICH subtypes such 

as cerebral parenchymal hemorrhage, intraventricular hemorrhage, epidural hemorrhage, 

subdural hemorrhage, and subarachnoid hemorrhage. We combined all ICH subtype classes 

and performed binary classification and segmentation at the volume level to reduce class 

imbalance and focus on brain bleeding in emergencies. Three neuroradiologists independently 

conducted labeling of ICH segmentation masks. Two veteran emergency radiologists with 14 

and 23 years of experience reviewed the data. Senior reviewers adjusted segmentation masks 

after reaching a consensus. The masks were pixel-annotated with 1 for ICH and 0 for non-ICH. 

We employed one internal and two external test datasets to verify the models in a clinical 

setting. From March to June 2017, AMC collected the internal dataset. Nowon Eulji Medical 

Center in Korea gathered external1 from July to October 2018. Pohang Stroke and Spine 

Hospital collected external2 from March to June 2019. We used a public dataset from 
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PhysioNet (1.3.1) with 75 patients to verify the models in the ICH case setting. The PhysioNet 

dataset has a mean ICH volume of 15.10 mL, which is low (see Figure 9). We trained and 

tuned using only the AMC training dataset, and other dataset properties were only referenced. 

 

Table 4. Patient demographic information and medical properties in four ICH datasets. 

Dataset 

Slice (Patient) Sex Age Spacing Manu. 

H N M F Mean±Std Mean S G P 

Train (AMC) 10,805 (747) 39,958 (722) 872 597 55.2±17.6 
x,y : 0.41 

z : 4.80 
1,378 97 0 

Validation (AMC) 541 (39) 1,907 (38) 40 37 53.7±18.9 
x,y : 0.41 

z : 4.80 
71 6 0 

T 

E 

S 

T 

Internal1 451 (29) 3,961 (100) 69 60 55.6±17.7 
x,y : 0.41 

z : 4.80 
125 4 0 

External1 1405 (86) 5,950 (162) Unknown 
x,y : 0.42 

z : 5.00 
116 132 0 

External2 282 (22) 7,507 (203) 96 130 59.6±18.8 
x,y : 0.43 

z : 5.00 
0 0 225 

External3 315 (34) 2,421 (39) 39 34 32.1±17.0 
x,y : 0.43 

z : 5.00 
73 0 0 

Note: H, hemorrhage; N, normal; M, male; F, female; Manu., manufacturer of device; S, Siemens; G, 

General Electronics; P, Philips. 

 

2.2 Sequential transfer learning using multi-task pretraining 

We describe SMART-Net (see Figure 10). Upstream and downstream tasks comprise our 

framework. Upstream tasks include classification (CLS), segmentation (SEG), and 

reconstruction (REC) (see Figure 10-(a)). In upstream tasks, a shared encoder may extract 

comprehensive features across all tasks, resulting in a robust feature extractor. In addition, we 

introduced consistency loss to better representation for the regulation of misaligned between 

classification and segmentation heads. In downstream tasks, there are two types of volume-

level target tasks; classification and segmentation of ICH, respectively (see Figure 10-(b, c)). 

We employed a pre-trained encoder as a feature extractor and connected it with optimal 3D 

operators to address volume-level downstream tasks. 
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Figure 10. Schematic overview of the SMART-Net framework. Our framework comprises upstream 

and downstream tasks: (a) An upstream task is a slice-level representation learning process using three 

multi-pretext tasks (classification, segmentation, reconstruction) with consistency loss. A downstream 

task is a process of extending to volume-level ICH tasks by transfer learning using the pre-trained 

encoder in the upstream. The pre-trained encoder, as a feature extractor, extracts and accumulates 

features in a slice-by-slice way, as much as the depth of the CT scan. (b) Accumulated features are 

transmitted to an LSTM-based classifier to process continuous information and perform volume-level 

classification. (c) For volume-level segmentation, the stacked feature maps are extracted with the pre-

trained encoder and an initialized slice-level decoder. The feature maps are processed by the Conv3D-

based segmenter to complement volumetric spatial details. 

 

2.2.1 Multi-pretext tasks learning for representation as upstream task 

To create a robust feature extractor that captures worldwide ICH features through pretext jobs, 

we used a hard parameter shared architecture [7] with a shared encoder and three task-specific 

layers. As an encoder, we chose ResNet-50. The encoder uses one stem block and four stages 

of ResNet to extract features from a CT slice image (see Figure 10-(a)). Each target-specific 

layer receives the encoder's last layer's features. Each ResNet stage's features are sent as skip 
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connections to depth-level segmentation decoders. The first task-specific layer for CLS has a 

simple linear classifier with a global average pool, dropout, and bias. Our CLS upstream 

framework is the same as ResNet-50. This CLS task determines ICH in each CT slice, allowing 

the encoder to discover its crux characteristics. The CLS loss is defined as the binary cross-

entropy loss (BCE loss). The second task-specific layer for SEG has U-Net decoder blocks 

with skip connections. Our SEG upstream architecture has skip connections like U-Net. The 

depth of the SEG decoder is selected considering the down sampling of ResNet stages, and we 

added spatial and channel squeeze & excitation (SCSE) [36] blocks at the beginning and end 

of each decoder block to reinforce the representation of the feature. This SEG task localizes 

the ICH lesion and segments the brain hemorrhage in each CT slice, allowing the encoder to 

catch local features of the lesion [37]. The SEG loss was defined as the overlap-based dice-

coefficient loss (DICE loss). The third task-specific layer for REC contains PixelShuffle [38] 

decoder blocks, which super-resolve low-resolution data into high-resolution data with low 

computational cost. Our REC upstream framework is similar to an autoencoder without skip 

connections to avoid trivial solutions and generate more important features [39]. This REC 

task reconstructs the input CT slice images via encoding-decoding, which is widely employed 

in unsupervised learning to help the encoder learn the disentangled feature representation by 

refining image features [40]. The REC loss was defined as the mean absolute error loss. In 

multi-head structures, the preference of characteristics in the heads of various target-specific 

layers might affect training [41-43]. This discrepancy also emerged during our training (see 

Figure 12). We incorporated consistency loss to regularize CLS and SEG head differences and 

improved the concurrence rate. Since the SEG head and CLS head don't match the resolution, 

we down sampled the SEG head to the CLS head. Two outputs were compared by mean square 

error loss using the nonparametric down sampling techniques Maxpool and Avgpool of the 

16×16 kernel. The loss allows encoder to focus on typical CLS and SEG elements. 

 

2.2.2 Volume-level classification and segmentation tasks as downstream task 

To properly leverage the general representation, we employed transfer learning with a pre-

trained encoder as a feature extractor. To reduce the degradation of individual performance 

[44], we kept the shared encoder and eliminated target-specific layers. To achieve volume-



21 

level classification or segmentation, we processed the 3D features by stacking 2D features 

predicted by the feature extractor iteratively by CT depths. The 3D features are transmitted to 

the 3D operators to enhance volumetric information. In volume-level target classification, we 

used a 3D classifier with a variable-length LSTM layer to capture sequential information in 

successive slices. The volume-level classification has been performed by determining the 

existence of ICH using BCE loss. In volume-level target segmentation, we chose a 3D 

segmenter based on 3D convolution layers capable of capturing 3D spatial features. The slice-

level decoder was randomly initialized and retrained to avoid negative transfer bias and focus 

only on the target task. Localizing the ICH lesion at the volume level utilizing BCE and DICE 

losses was used for target segmentation. To avoid catastrophic forgetting [45], gradual 

unfreezing was used instead of direct fine-tuning [46]. We trained the 3D operator with the 

encoder frozen, then slowly unfroze the encoder. 

 

3. Experiments and Results 

Metrics. We used receiver operating characteristic (ROC) analysis, including AUCs, 

sensitivity (SEN), specificity (SPE), and F1-scores (F1) for the quantitative evaluation of ICH 

classification [24], and dice similarity coefficient (DSC) for ICH segmentation [47]. The DSC 

is an overlap-based indicator used only for positive cases. A metric was needed to evaluate 

segmentation performance in negative instances. Although pixel-wise specificity might be 

utilized, it was not useful as a criterion for performance comparisons in the ICH segmentation 

job since brain hemorrhage accounted for such a small part of CT scans. To show the difference 

in negative case performance, we established the false-positive volume (FPV), which is 

clinically meaningful despite being a rough estimate. FPV was determined by multiplying 

segmentation results with patient pixel spacing as follows: 

𝐹𝑃𝑉 =  ∑ (�̂�𝑠𝑒𝑔𝑖
∗ 𝑠𝑖),𝑛𝑜𝑟𝑚𝑎𝑙                        (1) 

where �̂�𝑠𝑒𝑔𝑖
  is the output in volume-level SEG, and 𝑠𝑖  is meta information of the pixel 

spacing volume in CT scans for converting to the volume unit (μL). False-positive reduction 

improves when FPV decreases. We also propose the concurrency rate to measure consistency 

loss as follows: 

𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 =  
1

𝑁
∑ [𝑟𝑜𝑢𝑛𝑑(�̂�𝑐𝑙𝑠𝑖

) == max(𝑟𝑜𝑢𝑛𝑑(�̂�𝑠𝑒𝑔𝑖
))],𝑁

𝑖=1       (2) 
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where �̂�𝑐𝑙𝑠𝑖
  and �̂�𝑠𝑒𝑔𝑖

  are the output of the CLS head and SEG head at slice-level, 

respectively, and N is the positive or negative slice. […] is the Iverson bracket which equals 1 

when the expression within it is true and equals 0 otherwise. The max function was applied to 

the output of the SEG head for matching the CLS head output’s dimension. The round function 

is the round-to-even method. We used an activation map to analyze pretext task combinations, 

consistency loss, and previous studies to determine how the pretext task affects the feature 

extractor (see Figure 11). To test consistency loss's influence on representation learning, we 

evaluated classification and segmentation upstream/downstream performance (see Table 5). 

We examined the activation maps of the convolution layer before each target-specific head to 

visualize consistency loss and misalignment difficulties in multi-head structure (see Figure 

12). We tested our SMART-Net with existing state-of-the-art models in volume-level ICH 

classification and segmentation using four test sets to assess the models' robustness and 

performance (see Table 6). ImageNet (pre-trained models by ImageNet), Model Genesis [48], 

and Autoencoder [49] were chosen as comparison groups for SMART-Net representation 

learning methods. For volume-level classification tasks, we compared SMART-Net-CLS to 

[50-52]. Studies [53, 54] compared SMART-Net-SEG to volume-level segmentation. We 

conducted excessive ablation investigations on all multi-pretext task combinations of CLS, 

SEG, and REC with consistency loss to compare transferability and prove SMART-Net as the 

best combination (see Table 7). To compare ablation studies fairly, all ablation study models' 

encoders were set to ResNet-50, and training settings were the same. DeLong et al. [28] 

compared ROC curves for AUC values of correlated data in the classification task and paired 

t-tests were used to compare DSC and FPV values in the segmentation task. 

Implementation details. For each of the up and downstream tasks, the same training settings 

have been applied for fair comparisons. We clipped [0, 80] Hounsfield units (HU) and scaled 

them to [0, 1] for network input. CLAHE was used to boost CT scan contrast. Due to GPU 

restrictions, the image was linearly interpolated to 256×256. We did not use cropping nor did 

we make patch-volume images, which could lead to unstable results and false positives [34]. 

To reduce ICH heterogeneity, seven transformations were used from Albumentation [30]: 

ShiftScaleRotate, RandShiftIntensity, HorizontalFlip, RandBrightness, RandContrast, 
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GaussNoise, and Blur. The batch size was set to the GPU's maximum memory. The network 

was initialized by a uniform Xavier, and we used an Adam optimizer with a learning rate of 

1e-4 in the upstream and 5e-6 in the downstream, a 5-epoch warmup, and 5e-4 weight decay 

and betas (0.9, 0.999). The learning rate was reduced by the polynomial learning rate schedule. 

Upstream training had 1000 epochs and downstream training had 500. We manually balanced 

multi-task weights between three pretext tasks. We fixed multi-task weights identically to 

compare MTL's role as a pretext task rather than comparing multiple combinations. 

 

3.1 Upstream results 

3.1.1 Comparison of pretext tasks’ effects on the upstream task 

Figure 11 shows that despite the identical training settings, the encoder might focus differently 

depending on the upstream pretext tasks. ImageNet's pre-trained feature extractor recognizes 

the whole brain as an object and focuses on cerebral textures and edges. The Model Genesis 

feature extractor identifies ROI by focusing on the cortical region inside the brain and the 

image edge outside the brain, similar to the REC pretext task. According to ablation research, 

CLS, SEG, and REC each have a distinct personality. CLS allows the feature extractor to focus 

on the most prominent points of ICH, while SEG and REC collect the overall picture 

characteristics. The REC pretext feature extractor is equally activated in the brain, but the SEG 

feature extractor is sporadically focused on the entire image. Dual pretext tasks have harmonic 

qualities. In CLS+SEG and CLS+REC activation maps, the intensely activated CLS pretext 

task and the extensively activated SEG or REC pretext tasks work together, resulting in more 

accurate ROI activation. SEG+REC pretext task evened out intermittently active areas. Triple 

pretext tasks combine the representations of three pretext tasks to create an ROI-friendly 

representation. In summary, the type and quantity of pretext tasks affect feature extraction, and 

when all three were run simultaneously, the most relevant activation map appeared. 
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Figure 11. Comparisons of the pre-trained encoder activation map in the upstream task according to 

multi-pretext task combinations and the previous representation learning approaches. To perform a 

comparison based on the severity of ICH cases, two severe cases (≥ 30 mL), two moderate cases (15-

30 mL), and four mild cases (≤ 15 mL) of ICH are displayed. 

 

3.1.2 Effect of consistency loss 

The consistency loss between CLS and SEG heads affected the encoder's representation. In 

Figure 11, applying consistency loss to dual and triple pretext tasks makes the ROI activation 

area more significant. Table 5 shows that the concurrence rate rose by 7% in hemorrhage cases 

and 9.5% in healthy controls. Even while upstream slice-level performance may have declined, 

downstream volume-level performance improved, meaning consistency loss increased 

transferability. With the addition of the REC pretext task, the CLS+SEG model's downstream 

AUC performance increased (p<0.05), and when consistency loss was included, the 

performance was much better (p<0.01). In downstream segmentation, adding REC pretext to 

CLS+SEG+w/cosists. enhanced DSC (p<0.05). Adding consistency loss to CLS+SEG+REC 

enhanced DSC and FPV (p<0.05). In Figure 12, the left three columns show three types of 

discrepancies in multi-head structures: the SEG head detected lesions, but the CLS head missed 

them (SEG-TP/CLS-FN), the SEG head missed lesions, but the CLS head detected them (SEG-

FN/CLS-TP), and both heads detected lesions but focused on different locations (SEG-
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TP/CLS-TP). With consistency loss, all three types of activation zones were adjusted to 

meaningful ROIs, and two target-specific heads focused on the same sites. Based on the 

experimental upstream findings, we used the encoder trained by CLS, SEG, and REC pretext 

job with consistency loss in the SMART-Net framework. 

 

Table 5. Comparisons of up and downstream performance according to consistency loss in the internal 

test set. 

 
Upstream slice-level comparison Downstream volume-level comparison 

Concurrence Classification Segmentation Classification Segmentation 

Pretext Task Pos. Neg. AUC F1 SEN SPE DSC FPV↓ AUC F1 SEN SPE DSC FPV↓ 

CLS+SEG 0.828 0.841 0.954 0.638 0.871 0.903 0.504 4.9 0.956 0.800 0.897 0.900 0.604 23.8 

+ w/ consist. 0.871 0.914 0.958 0.731 0.815 0.953 0.515 4.3 0.959 0.831 0.931 0.910 0.612 7.7 

CLS+SEG+REC 0.831 0.824 0.968 0.691 0.902 0.920 0.530 3.2 0.984 0.871 0.931 0.940 0.622 12.7 

+ w/ consist. 0.901 0.919 0.963 0.685 0.897 0.919 0.506 2.4 0.988 0.933 0.966 0.970 0.642 4.9 

Note: ↓, the lower the value, the better performance; consist., consistency loss; Pos., hemorrhage cases; 

Neg., healthy controls. 

 

 

Figure 12. Illustrations of the output mismatches caused by the target-specific multi-head structure and 

of the effects of the consistency loss in the upstream task. The first and fourth columns are the CT image 

overlapped with the ground truth mask (red) and prediction masks (blue, w/o the consistency loss; green, 

w/ the consistency loss). The second and fifth columns are the activation maps of the segmentation head 

according to the consistency loss. The activation map of the classification head according to the 

consistency loss is shown in the third and sixth columns. Note: TP, true positive; FN, false negative. 
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3.2 Comparisons of target tasks in downstream analysis 

3.2.1 Comparison of performance of previous work 

Table 6 displays the quantitative findings of volume-level target tasks, where the top of the 

table corresponds to a comparison with the prior classification studies and the bottom refers to 

a comparison with the previous segmentation research. For the classification task, the proposed 

SMART-Net-CLS model outperforms other models in all metrics, with AUC, F1, SEN, and 

SPE values of 0.988, 0.933, 0.966, and 0.970 in the internal test set, respectively, and with the 

same tendency in external test sets by a large margin, with the exception of the full-version 

model derived from the study by Patel et al. [51]. The SMART-Net-CLS is steady with respect 

to external datasets, whereas other methods display unstable performance. There is a 

statistically significant distinction between the SMART-Net-CLS and the simple version of 

Patel et al., Singh et al. [52], Model Genesis (p<0.005), and ImageNet (p<0.001), which is 

more pronounced in external datasets. For the segmentation task, the suggested SMART-Net-

SEG model achieved the best DSC and FPV in the internal test set, with 0.642 and 4.9μL, 

respectively. By comparing the findings from Isensee et al. [54] and SMART-Net-SEG, we 

can see that although the 3D version of Isensee et al. has the best DSC performance in several 

test sets, it has an excessive number of false positives exceeding 660μL in the control groups 

of all test sets. In contrast, SMART-Net-SEG produced the most balanced findings in both the 

ICH group and the control group and is more robust in external datasets than Isensee et al.’s 

3D version. Consequently, the SMART-Net-SEG achieved the best DSC and FPV at 0.57 and 

4.5μL, respectively, based on the average result of the four test sets. Statistically, SMART-Net-

SEG differs from the techniques of Patel et al. [53] (p<0.05), Model Genesis, and ImageNet 

(p<0.001), and the difference is more obvious in external datasets. Figure 13 illustrates the 

slice-level segmentation results for two ICH patients (Severe#1: approximately 199.45 mL and 

Mild#1: approximately 11.99 mL) and two healthy controls (Normal#1: beam hardening 

artifact and Normal#2: no lesion) in the internal test set. Our SMART-Net-SEG shows more 

consistent findings considering the ground truth in both severe and mild ICH situations, and 

our model has a reduced false-positive rate in normal cases, including the artifact case, 

compared to previous approaches. Figure 14 demonstrates that our SMART-Net-SEG 

surpasses all other models in terms of false-positive reduction performance. 
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Table 6. Quantitative results of volume-level target classification and segmentation tasks for a 

comparative analysis with previous methods on four test sets. 

Classification results 

 Internal 1 External 1 External 2 External 3 

Methods AUC F1 SEN SPE AUC F1 SEN SPE AUC F1 SEN SPE AUC F1 SEN SPE 

Patel et al. (2019b) (Full) 0.940 0.852 0.897 0.940 0.928* 0.828 0.837 0.901 0.888 0.650 0.591 0.975 0.918 0.816 0.912 0.718 

Patel et al. (2019b) (Simple) 0.875** 0.632 0.621 0.900 0.747*** 0.560 0.488 0.864 0.596*** 0.345 0.227 0.990 0.733*** 0.800 0.882 0.205 

Singh et al. 0.864** 0.607 0.586 0.900 0.868*** 0.718 0.709 0.858 0.715*** 0.270 0.545 0.729 0.776** 0.603 0.559 0.774 

Scratch (end-to-end) 0.914*** 0.724 0.724 0.920 0.836*** 0.696 0.733 0.802 0.805*** 0.384 0.636 0.818 0.808** 0.699 0.853 0.487 

ImageNet (≈Nguyen et al.) 0.903* 0.780 0.793 0.930 0.834*** 0.629 0.523 0.926 0.661*** 0.414 0.273 0.995 0.768** 0.730 0.794 0.667 

Autoencoder (Hinton et al.) 0.714*** 0.462 0.724 0.590 0.627*** 0.522 0.628 0.586 0.576*** 0.190 0.909 0.167 0.676*** 0.633 0.912 0.154 

Model Genesis (Zhou et al.) 0.862** 0.505 0.793 0.610 0.804*** 0.626 0.779 0.623 0.745** 0.191 0.955 0.128 0.654*** 0.633 0.912 0.154 

SMART-Net-CLS (Ours) 0.988 0.933 0.966 0.970 0.966 0.866 0.942 0.877 0.947 0.706 0.864 0.946 0.953 0.842 0.971 0.744 

Segmentation results 

 Internal 1 External 1 External 2 External 3 Average 

Methods 
DSC 

(ICH) 

FPV↓ 

(Normal) 

DSC 

(ICH) 

FPV↓ 

(Normal) 

DSC 

(ICH) 

FPV↓ 

(Normal) 

DSC 

(ICH) 

FPV↓ 

(Normal) 

DSC 

(ICH) 

FPV↓ 

(Normal) 

Isensee et al. (2D version) 0.627 40.3 0.599   14.6*** 0.526 60.2*** 0.505 25.0* 0.564 35.0 

Isensee et al. (3D version) 0.622   408.0***   0.665***   511.5*** 0.541   254.2*** 0.462   1469.5*** 0.573 660.8 

Patel et al. (2019a)   0.491*** 21.1   0.504*** 2.8   0.450**   223.0***   0.394*** 74.1 0.460 80.3 

Scratch (end-to-end)  0.534**  44.4***   0.419***   17.6***   0.351*** 6.6   0.456** 36.7 0.440 26.3 

ImageNet 0.603* 37.1* 0.591   29.6*** 0.529   21.3** 0.494 249.7 0.554 84.4 

Autoencoder (Hinton et al.) 0.612 77.9** 0.601   104.3*** 0.554   106.3***   0.441**   357.7*** 0.552 156.5 

Model Genesis (Zhou et al.) 0.600* 72.5***   0.565***   34.4**   0.480**   29.3** 0.486 83.5* 0.533 54.9 

SMART-Net-SEG (Ours) 0.642 4.9 0.602 2.2 0.537 7.9 0.519 3.1 0.575 4.5 

Note: ↓, the lower the value, the better performance; p-values were calculated between SMART-Net vs. 

others: *, P < 0.05; **, P < 0.01; ***, P < 0.001. The red color represents the best performance, and the 

blue color represents the second-highest performance. 
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Figure 13. Comparison of volume-level segmentation results for severe (#1: 199.45 mL) and mild (#1: 

11.99 mL) ICH cases, and two normal (#1: beam hardening artifact, #2: no lesion) cases. Owing to the 

nature of sporadic cerebral hemorrhage, the slice-level comparison is more appropriate than the 3D 

rendering visualization comparison, thus, we present the segmentation result of volume-level at the slice 

level. 

 

 
Figure 14. Comparisons of false-positive reduction performance on the normal cases in volume-level 

segmentation using box plots on four test sets. 

 

3.2.2 Performance of ablation studies on pretext task 

The quantitative outcomes of pretext task ablation studies in volume-level classification and 

segmentation tasks are presented in Table 7. Triple pretext tasks with consistency loss yielded 

the best results for both the classification and segmentation of targets. As demonstrated in 

Table 7, models trained using a single pretext task in the upstream task and the end-to-end 

scratch technique are more unstable on external test sets than models trained using multiple 

pretext tasks. In addition, the model employing consistency loss in the upstream job has a 

false-positive rate that is lower than 10μL and lower than other models. In classification, 

significant differences between ablation experiments and SMART-Net-CLS/SEG were more 

prominent than in segmentation. 
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Table 7. Quantitative results of volume-level target classification and segmentation tasks for a 

comparative analysis with ablation studies on four test sets. 

Classification results 

 Internal 1 External 1 External 2 External 3 

Pretext task AUC F1 SEN SPE AUC F1 SEN SPE AUC F1 SEN SPE AUC F1 SEN SPE 

Only CLS 0.947* 0.776 0.897 0.880 0.920*** 0.759 0.860 0.784 0.943 0.326 0.955 0.576 0.902* 0.790 0.941 0.615 

Only SEG 0.456*** 0.367 1.000 0.000 0.644*** 0.515 1.000 0.000 0.638*** 0.178 1.000 0.000 0.381*** 0.636 1.000 0.000 

Only REC 0.714*** 0.462 0.724 0.590 0.627*** 0.522 0.628 0.586 0.576*** 0.190 0.909 0.167 0.676*** 0.633 0.912 0.154 

CLS+SEG 0.956** 0.800 0.897 0.900 0.943* 0.826 0.884 0.864 0.911 0.642 0.712 0.916 0.786*** 0.734 0.853 0.590 

CLS+SEG w/ consist 0.959 0.831 0.931 0.910 0.957 0.841 0.860 0.901 0.936 0.653 0.727 0.946 0.936 0.800 0.941 0.641 

CLS+REC 0.975 0.862 0.966 0.920 0.935** 0.831 0.860 0.889 0.910 0.607 0.773 0.916 0.897 0.762 0.941 0.538 

SEG+REC 0.909* 0.716 0.828 0.860 0.880*** 0.621 0.953 0.407 0.803** 0.263 0.818 0.522 0.829** 0.694 1.000 0.231 

CLS+SEG+REC 0.984 0.871 0.931 0.940 0.958 0.845 0.919 0.864 0.934 0.654 0.773 0.936 0.945 0.825 0.941 0.667 

SMART-Net-CLS 0.988 0.933 0.966 0.970 0.966 0.866 0.942 0.877 0.947 0.706 0.818 0.946 0.953 0.842 0.971 0.744 

Segmentation results 

 Internal 1 External 1 External 2 External 3 Average 

Pretext task 
DSC 

(ICH) 

FPV↓ 

(Normal) 

DSC 

(ICH) 

FPV↓ 

(Normal) 

DSC 

(ICH) 

FPV↓ 

(Normal) 

DSC 

(ICH) 

FPV↓ 

(Normal) 

DSC 

(ICH) 

FPV↓ 

(Normal) 

Only CLS 0.594* 40.4 0.573*** 83.3** 0.489* 15.1 0.510 21.1* 0.542 40.0 

Only SEG 0.618 18.1 0.607 13.8* 0.514* 16.3 0.475* 40.3 0.554 22.1 

Only REC 0.612 77.9** 0.601 104.3*** 0.554 106.3*** 0.441** 357.7*** 0.552 156.5 

CLS+SEG 0.604* 23.8* 0.593 73.7*** 0.512 21.6* 0.503 117.9 0.553 59.3 

CLS+SEG w/ consist 0.612* 7.7 0.587* 5.1 0.516 9.3 0.511 5.2 0.557 6.8 

CLS+REC 0.604 141.1** 0.561* 138.3*** 0.515 139.0*** 0.377*** 464.4*** 0.514 220.7 

SEG+REC 0.597 30.5 0.591 10.6** 0.502* 11.6 0.507* 9.8 0.549 15.6 

CLS+SEG+REC 0.622 12.7 0.595 9.3** 0.520 12.9 0.517 7.0 0.564 10.5 

SMART-Net-SEG 0.642 4.9 0.602 2.2 0.537 7.9 0.519 3.1 0.575 4.5 

Note: ↓, the lower the value, the better performance; consist., consistency loss; p-values were calculated 

between SMART-Net vs. others: *, P < 0.05; **, P < 0.01; ***, P < 0.001. The red text represents the 

best performance, and the blue text represents the second-highest performance. 

 

4. Discussion 

There are difficulties because ICH's heterogeneity makes training difficult, high sensitivity and 

specificity are required, volume predictions are costly, and there is an external data 

vulnerability. In this study, we devised and evaluated SMART-Net to overcome these 

difficulties. Figure 11 shows that feature extractor representations differ by multi-pretext task 

combination. Our three multi-pretext tasks with consistency loss improved encoder 

representation. Our training technique extracts global pretext features, allowing encoders to 

handle features in multiple ways. More upstream multitasking led to more significant 
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activations. Adding consistency loss raised the two heads' concurrence rate and transferability 

(see Table 5). In Figure 12, consistency loss can help refine the feature extractor's 

representation because it stabilizes learning by regulating discrepancies between the 

classification and segmentation heads by forcing them to find the same meaning from a binary 

task perspective. Table 5 shows that while upstream performance is poor, downstream 

performance can be improved, which is similar to Salman et al. [55]. Multi-pretext tasks and 

consistency loss in the upstream task improved transfer learning. Table 6 shows that transfer 

learning with 3D operators and the multi-pretext feature extractor enhances volume-level 

segmentation and classification. SMART-Net-CLS and SMART-Net-SEG had the best 

classification and segmentation results in four test sets. Due to negative transfer, Model 

Genesis and Autoencoder performed worse than the scratch model in volume-level ICH 

classification. In segmentation, Isensee et al.'s 3D version had a significant false-positive rate 

despite good sensitivity. Other models were external data-dependent and unstable. As seen in 

Table 7, the encoder trained with more upstream pretext tasks improved downstream 

performance and became more robust to external input. These results might be used to add 

SMART-Net to an emergency triage system to prioritize severe cases and the CAD system to 

exclude real normal cases from radiologists' reading lists, reflecting a high negative predicted 

value. Our technique has drawbacks despite enhanced performance. MTL requires task 

balancing [9, 10]. Even in our research, pretext imbalances could impair upstream analyses. 

Second, because our research mainly relies on feature extractors, different backbone models 

can produce different outcomes. Third, segmentation masks differ by radiologist's experience 

and CT vendor. 

 

5. Summary 

We presented a multi-task representation learning network for ICH volume-level classification 

and segmentation in NCCT. Initially, we constructed a robust feature extractor using multi-

pretext tasks and incorporated consistency loss for the concurrence of classification (CLS) and 

segmentation (SEG) heads. In order to tackle the volume-level ICH challenges, we paired a 

pre-trained feature extractor with the best 3D operator using ablation research. By 

investigating the interaction between many pretext tasks, we discovered that the combination 
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of pretext tasks impacts the performance of the feature extractor. The proposed framework was 

derived from our exploratory studies and subsequently evaluated using one internal and three 

external test sets that reflected the actual incidence of ICH in emergency care settings. In 

comparison to existing approaches, our framework obtained state-of-the-art volume-level 

outcomes for both ICH classification and segmentation performance, as indicated by the 

evaluation results. Consequently, SMART-Net may be practically useful in actual clinical 

settings. 

 

C. Application of deep representation learning to low-dose CT denoising task 

1. Background and Objective 

Computed tomography (CT) is one of the most important diagnostic modalities utilized in 

modern medical facilities. X-rays have the potential to produce genetic damage and cancer 

proportional to the radiation dose [56, 57]. ALARA (As Low As Reasonably Achievable) 

principles are commonly utilized in CT imaging to avoid unintended side effects [58]. 

Reducing the radiation dose increases noise and artifacts in the generated images, which may 

affect the diagnostic confidence and accuracy of radiologists. Consequently, substantial effort 

has been devoted to creating enhanced image reconstruction or image processing approaches 

for low-dose CT (LDCT). Even though many deep learning algorithms have been applied to 

LDCT denoising in recent years, radiologists still face challenges such as over smoothness and 

visual discomfort. In this paper, we propose a multi-task discriminator-based generative 

adversarial network (MTD-GAN) capable of performing simultaneously three visual tasks 

(classification, segmentation, and re-construction) in a discriminator. To stabilize GAN 

training, we present two novel loss functions referred to as non-difference suppression (NDS) 

loss and reconstruction consistency (RC) loss. In addition, we employ a fast Fourier transform 

with convolution block (FFT-Conv Block) in the generator to utilize both high- and low-

frequency characteristics. Our model has been tested by pixel-space and feature-space based 

metrics in the head and neck LDCT denoising task, and the findings demonstrate that it 

outperforms the state-of-the-art denoising algorithms statistically and qualitatively. 
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2. Materials and Methods 

2.1 Dataset 

The head and neck CT denoising dataset was gathered by scanning the database of the Asan 

Medical Center in the Republic of Korea for patients who underwent consecutive CT scans 

between July 2020 and August 2020. Table 8 summarizes LDCT denoising datasets. In CT 

data sets for 130 patients, 6,054 pairs of pictures (100 patients) were randomly selected as the 

training set, 845 pairs of images (15 patients) as the validation set, and 859 pairs of images (15 

patients) as the test set. A reconstruction program [59] inserts Poisson random noise into 

quarter-dose LDCT pictures and normal-dose CT (NDCT) images to train the model. All CT 

images are 3mm thick and B30 kernel. 

 

Table 8. Patient demographic information and medical characteristics in the LDCT denoising dataset. 

Dataset 

Slice 

(Patient) 
Gender Age Spacing 

LDCT NDCT Male Female Mean±Std Mean 

Head & Neck CT 

Train 
6,054 

(100) 

6,054 

(100) 
38 62 58.9±19.8 

x, y : 0.40 

z : 3.00 

Valid 
845 

(15) 

845 

(15) 
5 10 48.5±14.9 

x, y : 0.40 

z : 3.00 

Test 
859 

(15) 

859 

(15) 
7 8 55.1±16.4 

x, y : 0.40 

z : 3.00 

 

2.2 Multi-task discriminator GAN (MTD-GAN) 

Here, we present information about MTD-GAN (see Figure 15). Our design incorporates both 

a discriminator and a generator. To differentiate between the denoiser's output and the NDCT 

image target, the discriminator performs three vision multitasks: reconstruction, segmentation, 

and classification. In addition, we added two losses for better representation and sensitivity 

regulation. The generator is constructed as a denoiser and can be utilized independently during 

testing. Considering the virtues of the Fourier domain, we incorporated the FFT-Conv Block 

into our generator to enhance performance. Our MTD-GAN is optimized by means of an 

adversarial technique. 
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Figure 15. Schematic overview of the MTD-GAN framework. Our framework comprises a 

discriminator and generator: A discriminator is trained for distinguishing the real normal-dose and de-

noised images by three multi-tasks (classification, segmentation, reconstruction) with consistency loss 

using reconstruction output. In the generator, we adopted the RED-CNN as a base denoiser and added 

the FFT-Conv block at every layer for better denoising performance. Note: SN; spectral normalization 

[60]. 

 

2.2.1 Multi-task discriminator 

A conventional discriminator is prone to forgetting prior samples since the distribution of 

synthetic samples moves as the generator constantly varies throughout training, resulting in an 

inability to retain a robust representation for identifying global and local image differences 

[61]. To address the issues, we present multi-task discriminators that perform classification, 

segmentation, and reconstruction. We implemented a hard parameter sharing architecture with 

a shared encoder and three types of task-specific layers for specified vision tasks in order to 

conduct successful multi-task learning for obtaining semantically denoised and normal-dose 

image features through diverse vision tasks. Our multi-task discriminator acquires a robust 

representation capable of characterizing both global and local changes between normal-dose 
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and denoised images (see Figure 15. discriminator part). 

Reconstruction (REC). The first target-specific layer for REC leads the discriminator to do a 

reconstruction task, hence enhancing the discrimination and generalization skills of the 

classifier module. This REC task is done unsupervised to reconstruct the fake or actual NDCT 

image via the encoding-decoding process, allowing the network to better learn the semantic 

contextual representation by capturing image properties [31]. The REC loss was defined as the 

mean absolute error loss. 

Classification (CLS). The second task-specific layer for CLS determines whether the image 

is fake or real, similar to conventional discriminators with a scalar value. This enables the 

network to learn the most discriminate difference by focusing on the global structure between 

fake and real images, which regularizes the generator accordingly. The CLS loss is defined as 

the LSGAN [62]. 

Segmentation (SEG). The third task-specific layer for SEG is used to determine if a picture 

is fake or real using a per-pixel confidence map, which allows the network to identify the 

difference in local features between normal-dose and denoised images. The SEG loss is also 

defined as the LSGAN. 

 

2.2.2 Non-difference suppression loss and consistency loss 

Non-difference suppression (NDS) loss. Due to the nature of the medical image, the regions 

of background and bone with the same LDCT and NDCT occupy a significant amount of the 

CT image, resulting in significant uncertainty when the discriminator makes a determination. 

In other words, according to the prior procedure [63], the background portions of NDCT and 

LDCT are identical, but the label values are calculated differently, resulting in the transmission 

of inaccurate information to the generator. To improve the stability of GAN training, we 

employ the NDS loss, which excludes regions without difference from the loss calculation in 

the difference mask between LDCT and NDCT images (see Figure 16). The NDS-SEG deficit 

is defined as follows: 

𝐿𝑁𝐷𝑆−𝑆𝐸𝐺 = 𝐿𝑆𝐸𝐺 × 𝑏𝑜𝑜𝑙𝑒𝑎𝑛(|𝑰𝐿𝐷𝐶𝑇 − 𝑰𝑁𝐷𝐶𝑇|),                       (3) 

where 𝐿𝑆𝐸𝐺  is the loss of segmentation and 𝑰𝐿𝐷𝐶𝑇 and 𝑰𝑁𝐷𝐶𝑇 are the image of low-dose CT 

scans and normal-dose CT scans. 
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Reconstruction consistency (RC) loss. As illustrated in Figure 15, green flows, we presented 

a novel consistency regularization for stabilizing GAN training utilizing reconstruction output. 

Consistency regularization penalizes the discriminator's sensitivity to enhance the 

performance of GANs [64]. In this article, the discrepancy between the input and reconstructed 

images is examined in detail. The RC loss is defined as follows: 

𝐿𝐶𝑜𝑛𝑠𝑖𝑠𝑡. = 𝔼𝑥𝑫
[‖𝑫𝐶𝐿𝑆(𝑥𝑫) − 𝑫𝐶𝐿𝑆(𝑫𝑅𝐸𝐶(𝑥𝑫))‖ + ‖𝑫𝑆𝐸𝐺(𝑥𝑫) − 𝑫𝑆𝐸𝐺(𝑫𝑅𝐸𝐶(𝑥𝑫))‖],    (4) 

where 𝑥𝑫 is the input of the discriminator and 𝑫𝐶𝐿𝑆, 𝑫𝑆𝐸𝐺  and 𝑫𝑅𝐸𝐶  are the CLS, SEG, and 

REC layers of multi-task discriminator scans and normal-dose CT scans. 

 

 

Figure 16. A concept of our NDS loss to LSGAN loss in segmentation task. 

 

2.2.3 FFT-Generator 

We chose the RED-CNN [65] base denoiser with 10 (de)convolutional layers at both the 

encoder and decoder to demonstrate the influence of the multitask-based discriminators. A 

convolutional operator excels at retrieving high-frequency details but may be incapable of 

examining low-frequency data. According to the spectral convolution theorem [66] in Fourier 

theory, updating a single value in the spectrum domain has a global effect on the image, giving 

it the benefit of a large receptive field [67]. Thus, we incorporated the FFT-Conv Block to gain 

the benefits of modeling both high- and low-frequency differences between hazy and clear 

features, as well as long- and short-term interactions. In addition to a standard spatial residual 

flow, as shown in Figure 15. generator section, the FFT-Conv Block translates initial spatial 
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characteristics into a spectrum domain, performs fast updates on spectral data, and then 

converts data back into the spatial domain. The original adversarial LSGAN loss for the 

generator is calculated as follows: 

𝐿𝑎𝑑𝑣 = 𝔼𝑥𝑮
[𝑫𝐶𝐿𝑆(𝑥𝑫_𝒇𝒂𝒌𝒆) − 1]2 + 𝔼𝑥𝑮

[𝑫𝑆𝐸𝐺(𝑥𝑫_𝒇𝒂𝒌𝒆) − 1]2,          (5) 

where 𝑥𝑮 and 𝑥𝑫_𝒇𝒂𝒌𝒆 are the input of the generator and the fake input of the discriminator. 

We also applied the NDS loss to adversarial loss in the generator as follows:  

𝐿𝑁𝐷𝑆−𝑎𝑑𝑣 = 𝔼𝑥𝑮
[𝑫𝐶𝐿𝑆(𝑥𝑫_𝒇𝒂𝒌𝒆) − 1]2 + 𝔼𝑥𝑮

[𝑫𝑆𝐸𝐺(𝑥𝑫_𝒇𝒂𝒌𝒆) − 1]2 × 𝑏𝑜𝑜𝑙𝑒𝑎𝑛(|𝑰𝐿𝐷𝐶𝑇 − 𝑰𝑁𝐷𝐶𝑇|),  (6) 

We used the Charbonnier loss [68] to achieve better performance on the denoising task. To 

further improve the fidelity of high-frequency details, we used the additional edge loss [69] to 

control the high-frequency components between the NDCT image and the denoised image. 

 

3. Experiments and Results 

Metrics. We employed peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and 

root mean square error (RMSE) for the quantitative evaluation of denoising image quality 

(RMSE). We further adopted perceptual loss (PL) [70], texture matching loss (TML) [71], and 

Fréchet inception distance (FID) [72] to assess feature space similarity because these metrics 

are susceptible to over smoothed images [63, 73]. RED-CNN [65], EDCNN [73], Restormer 

[74], CTformer [75], WGAN-VGG [70], MAP-NN [69], and DU-GAN [63] are state-of-the-

art previous methods that are compared with our model. 

Implementation details. For a fair comparison, the training settings, including optimizer, 

patch size, epochs, and learning rate scheduler, were identical. 

1) Preprocessing: For network input, we employed a brain window that clips [0, 80] 

Hounsfield units (HU) and scales to [0, 1]. We clipped the foreground of the CT picture and 

then randomly extracted eight 64×64 patches from each 512×512 original image in each epoch. 

2) Augmentation: Data augmentation is used to extend the dataset by randomly rotating (90 

degrees, 180 degrees, or 270 degrees) and flipping a duplicate of the original image (up, down, 

left, or right). 

3) Training configuration: To ensure a fair comparison under the constraints of restricted 

resources, the batch size of each trial was set to the maximum for the single GPU's memory. 

The network was initialized by a uniform Xavier, and an AdamW optimizer with a learning 
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rate of 1e-4, a warmup of 10 epochs, weight decay of 5e-4, and betas of 0.1 was utilized (0.9, 

0.99). During the training of the polynomial learning rate schedule, the learning rate was 

lowered. The maximum number of epochs was 500. We empirically set the multi-task weights 

to be similar to compare the function of MTL in depth. We employed the projecting conflicting 

gradients (PCGrad) technique [76], which projects the gradient of one job onto the normal 

plane of the gradient of any other activity with a conflicting gradient, to eliminate gradient 

interference between several tasks. 

 

3.1 Comparison of previous works 

According to Table 9, our model has the best FID, PL, TML, and SSIM performance compared 

to other models, as well as competitive RMSE and PSNR performance. As shown in Figure 

17, our MTD-GAN has the best qualitative performance in decreasing noise/artifacts and 

preserving clinically significant anatomical structures, resulting in pictures that are radiologist-

friendly. 

 

 
Figure 17. The denoising results of previous methods on the test set. The display window is [0, 80] HU. 

We zoomed ROI marked by the red square where have clinically meaningful area. 
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Table 9. Quantitative results for a comparative analysis with previous methods on the test set. 

Previous works FID↓ PL↓ TML↓ RMSE↓ PSNR↑ SSIM↑ 

RED-CNN [65] 34.7098 0.1493 15.5072 0.0330 33.3131 0.9012 

EDCNN [73] 38.0299 0.1487 14.9475 0.0343 32.9481 0.8988 

Restormer [74] 32.7898 0.1469 15.2586 0.0323 33.5237 0.9026 

CTformer [75] 33.5319 0.1496 14.2172 0.0344 32.1764 0.8979 

WGAN-VGG [70] 53.9002 0.2629 29.7508 0.0589 26.3789 0.8454 

MAP-NN [69] 19.5778 0.1373 11.4723 0.0383 32.0321 0.8995 

DU-GAN [63] 18.8156 0.1285 10.5245 0.0364 32.5533 0.9035 

MTD-GAN (Ours) 17.6212 0.1276 10.3559 0.0369 31.2932 0.9037 

GT (NDCT) 9.8371 0.0 0.0 0.0 100.0 1.0 

Input (LDCT) 39.7624 0.1821 20.4434 0.0575 28.9550 0.8743 

 

3.2 Comparison of ablation studies 

To study the effect of the various MTD-GAN components, we conducted excessive ablation 

tests. To ensure a fair comparison, the training settings were fixed equally for a fair comparison 

and the number of epochs in the ablation study was up to 200 and the batch size was 20. Table 

10 and Figure 18 demonstrate that both quantitative and qualitative performance improved as 

MTD-GAN elements were incrementally introduced. 

 

Table 10. Quantitative results for a comparative analysis in ablation study on the test set. 

Ablation Study FID↓ PL↓ TML↓ RMSE↓ PSNR↑ SSIM↑ 

(a) G: RED-CNN / D: CLS-Discriminator 20.0615 0.1332 11.1556  0.0366 32.5082 0.9032 

(b) + D: CLS&SEG-Discriminator 19.1339 0.1329 10.9765  0.0375 32.3491 0.9027 

(c) + D: CLS&SEG&REC-Discriminator 18.3820 0.1324 10.9761  0.0372 32.4050 0.9025 

(d) + D: 𝐿NDS 18.2724 0.1329 11.0543  0.0369 32.4347 0.9028 

(e) + D: 𝐿Consist. 18.2577 0.1329 11.0562  0.0370 32.4502 0.9026 

(f) + G: FFT-Generator 17.9308 0.1275 10.2946  0.0371 31.2766 0.9035 

(g) + PCGrad (Ours) 17.6212 0.1276 10.3559 0.0369 31.2932 0.9037 

High 9.8355 0.0 0.0 0.0 100.0 1.0 

Low 39.7582 0.1821 20.4448 0.0575 28.9550 0.8743 

Note: The red color represents the best, and the blue color represents the second-highest performance. 
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Figure 18. The denoising results in the ablation study on the test set. The display window is [0, 80] HU. 

(a)-(g) are from the same as the label shown in Table 10. 

 

4. Discussion 

For radiologists, excessive smoothness and ocular discomfort remain. To solve these 

difficulties, we proposed MTD-GAN. We discovered that feature-space measurements offered 

the most reasonable credibility to radiologists, but pixel-based metrics are sensitive to hazy 

images. In actuality, the radiologist mistook the outputs of the model with the highest FID 

score performance for actual LDCT images. Table 9 shows that our model beats others in FID, 

PL, TML, and SSIM and is competitive in RMSE and PSNR. MTD-GAN maintains clinically 

significant anatomical features, giving radiologist-friendly pictures (see Figure 17). In CNNs, 

particularly RED-CNN and EDCNN, the output has a high PSNR but is over-smoothed. In 

transformers, the Restormer outputs have the highest PSNR and RMSE, but they're too smooth 

for radiologists. CTformer contains boundary artifacts in the stitched image because of setting 

input patch sizes. The WGAN-VGG has the worst image quality because of unstable training, 

while the MAP-NN and DU-GAN create high-fidelity denoised images. In the ablation studies, 

Table 10 shows that multitasking the discriminator improves the denoiser's FID. A multitask-

based discriminator can both provide per-pixel feedback to the denoiser and focus on the 

global structure at a semantic level. LDCT and NDCT image contexts can be distinguished. 

The FID performance improved when confusion was removed from the segmentation LSGAN 

loss and strong perturbation training was utilized to recover the discriminator. Through the 

FFT-Conv Block, blending low-and high-frequency data helps generate realistic images, 

demonstrating that performance can be improved by optimizing the generator. These MTD-

GAN results could be applied in a real medical context to reduce patient risk. Despite the better 
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performance, our technique has flaws. Task balancing is critical in MTL. Even in our research, 

we used PCGrad. However, it's still insufficient and unstable, thus multitasking experiments 

are done. Inspired by task balancing studies, we may explore fitted weights among multitasks 

in future trials. Second, feature-space metrics like FID, PL, and TML can lead to inadequate 

task evaluations. These indicators used a model pre-trained by nature photos, which is 

improper for medical usage [17, 18]. Many studies are currently underway, and feature-space 

metrics that use pre-trained medical images will emerge and be enhanced in the future. 

 

5. Summary 

In this paper, a unique GAN method employing a discriminator based on multiple tasks is 

created for clinical applications. This is, as far as we are aware, the first study to apply three 

vision multitasks to the discriminator in the LDCT denoising task. Primarily, we make three 

contributions: (1) An architecture based on several tasks strengthens the discriminator, 

directing the generator to synthesize images with global and local realism. (2) For stable GAN 

training, the NDS loss makes the discriminator robust by removing confusing areas in the 

segmentation task, while the RC loss utilizing the generated reconstruction enables the 

network to acquire more contextual knowledge. (3) The addition of the FFT-Conv Block to 

the LDCT denoising operation permits the generator to use both high- and low-frequency 

components and to increase the receptive field, resulting in images with a higher level of detail. 

Experimentally, the suggested MTD-GAN achieves superior denoising performance compared 

to previous approaches and has the potential for clinical use. 

 

Conclusion 

In this study, three experiments were performed to evaluate representation learning, 

particularly inductive transfer learning and multitask learning, in the medical domain. In the 

first study, sequential transfer learning was utilized to predict pediatric diagnoses, resulting in 

enhanced performance and distinct ROI activation. In the second study, multi-task learning 

was applied to develop a robust feature extractor for the brain hemorrhage identification task, 

resulting in improved performance even when using external data. In the third study, multi-

task learning was applied to improve the discriminator for low-dose CT denoise tasks, thereby 
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stabilizing GAN training. As evidenced by these findings, it is preferable to apply inductive 

transfer learning of representation learning rather than learn a model from scratch in medical 

domain tasks. 
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Abstract (with Korean) 

딥 러닝은 다양한 분야에서 사용되었고, 인상적인 결과를 가져왔다. 그러나 훈련 

데이터 부족, 촬영장비 또는 도메인 차이로 인한 성능 저하, 방사선 사진 및 CT 

스캔과 같은 고화질 영상 및 다른 의료 센터에 대한 견고성 등 의료 영역에서 

딥 러닝을 적용하는 데 여전히 어려움이 있다. 이러한 문제를 해결하기 위해 네

트워크에서 파생된 기능을 능숙하게 처리하는 연구인 표현 학습의 귀납적 전이 

학습 (inductive transfer learning), 즉 순차 전이 학습 (sequential transfer learning)과 다

중 작업 학습 (multi-task learning)이 활발히 연구되었다. 본 연구에서는 표현 학습, 

특히 순차 전이 학습과 멀티태스킹 학습을 포함한 귀납적 전이 학습이 의료 영

역에 어떤 영향을 미치는지 확인하기 위해 세가지 실험을 수행했다: ‘소아 진단에 

대한 심층 표현에 대한 연구’, ‘뇌출혈 진단에 대한 심층 표현 연구’, 그리고 ‘저 

선량 CT 노이즈 제거 작업에 대한 심층 표현 연구’. 첫 번째 연구에서는 성능 향

상을 위해 순차적 전이 학습을 적용했다. 우리는 방사선 사진 뷰를 기반으로 레

이블을 사용하여 클래스 균형 소아 방사선 사진 데이터 세트, PedXnet 을 구성하

고 감독된 표현 (supervised representation)을 개발했다. 골절 분류 및 골 연령 평가

를 포함한 소아 다운 스트림 작업을 통해 표현 학습의 효과를 검증했다. 그 결과, 

Model-PedXnets 의 전이 학습은 Model-Baseline 의 것에 비해 향상된 정량적 성능

을 보여주었다. Model-PedXnets는 Model-ImageNet과 동등하고 경우에 따라서는 성

능이 향상되었습니다. 특히 Model-PedXnets 는 가장 의미 있는 ROI 에 초점을 맞

췄다. 두 번째 연구에서는 견고성을 위해 다중 작업 학습을 적용했다. 우리는 두

개내 출혈 (ICH)의 진단을 위해 감독된 다중 작업 지원 표현 전달 학습 네트워

크 (SMART-Net)를 제안했다. 제안된 프레임워크는 업 스트림 및 다운 스트림 구

성 요소로 구성된다. 업 스트림에서 모델의 가중치 공유 인코더는 슬라이스 레벨 

다중 사전 정의 작업 (pretext task)을 수행하여 글로벌 기능을 캡처하는 강력한 기

능 추출기로 훈련된다. 다운 스트림에서, 전송 학습은 환자 단위 작업을 위해 사

전 훈련된 인코더와 3D 연산자를 사용하여 수행되었다. 네 가지 테스트 세트를 

기반으로 한 실험 결과는 SMART-Net 이 이전 방법에 비해 볼륨 레벨 ICH 분류 

및 세분화 측면에서 견고성과 성능이 우수함을 보여준다. 세 번째 연구에서는 판

별기 학습의 안정을 위해 멀티태스킹 학습을 적용했다. 우리는 저 선량 컴퓨터 

단층 촬영 (LDCT) 노이즈 제거 모델을 더 잘 정규화 하기 위해 다중 작업 판별
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기 GAN (MTD-GAN)을 제안한다. 이 모델은 GAN 프레임워크에서 판별기에 대한 

세 가지 다중 작업을 활용하여 노이즈 제거 이미지와 정상 선량 이미지 사이의 

전역 및 로컬 차이를 모두 학습한다. 또한 이미지와 푸리에 도메인을 모두 사용

하여 미세한 구조적 세부 사항을 학습할 수 있는 FFT-Generator 를 제안하여 CT 

노이즈 제거 작업을 개선하였다. 결과적으로, MTD-GAN 은 정량적 결과와 정성적 

결과에서 이전 방법보다 방사선 전문가 친화적인 성능을 달성한다. 세 가지 연구 

모두 의료 영역에서 순차적 전이 학습과 다중 작업 학습을 포함한 표현 학습이 

성능을 향상시키고 의미론적 특징을 추출하고 외부 데이터에 대해 모델을 견고

하게 만들 수 있음을 확인했다. 의료 영역에 인공지능을 적용하는 미래에는 단순

히 스크래치 모델을 훈련시켜 성능을 평가하기보다는 표현 학습을 고려해야 한

다. 
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