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Abstract  

In 2011 and 2018, two large randomized controlled trials demonstrating the superiority of low-

dose chest CT over chest radiography in detecting early-stage cancer and reducing lung cancer 

mortality were reported. Several lung cancer-related societies issued guidelines for lung cancer 

screening in response to these results. In Korea, the nationwide lung cancer screening program 

was initiated in 2019. In this screening program, smokers aged 54 to 74 with more than 30 pack-

years of smoking history are advised to undertake low-dose chest CT screening for lung cancer 

biannually. In this context, it is anticipated that the number of low-dose chest CTs will increase. 

During lung cancer screening, many pulmonary or cardiovascular diseases other than lung cancer 

have been reported. Chronic obstructive pulmonary disease (COPD), the third leading cause of 

mortality worldwide in 2019, according to the World Health Organization, is frequently found in 

lung cancer screening CT. Spirometry is the diagnostic gold standard for COPD with a FEV1/FVC 

ratio of less than 70%. However, evidence for large-scale spirometry screening is not reported. 

There are studies to solve the link between the morphological characteristics featured in medical 

images and pulmonary functions or diseases. For example, various volumetric parameters, airway 

tree parameters, and texture-based or radiomic features are suggested to find the association with 

spirometry-measured pulmonary function. Though these studies have demonstrated a correlation 

between the corresponding indicators and lung function, they have limitations in that human 

intervention is required for developing models or extracting features from images. Recently, the 

convolutional neural network-based deep learning approach has gained popularity in the field of 

medical imaging since it employs automatically extracted information during the training process 

and outperforms previous algorithms. Though most deep learning studies focused on detecting 

structural abnormalities with deep learning, recent studies showed an interest in relating structural 

and functional indices. For example, one recently published study utilized a deep learning network 

to predict pulmonary function and classify COPD-risk groups based on chest radiographs and 

radiologic reports. Nevertheless, the potential of CT for this purpose has not yet been investigated. 

Therefore, we studied the ability of convolutional neural networks to predict pulmonary function 

from low-dose CT scans acquired from a single center's health screening participants. 

Two models were separately trained using CNN-derived features from low-dose chest CT to 

regress the observed values of forced vital capacity (FVC) and forced expiratory volume in one 

second (FEV1) in liters (L). Each CT image was resampled with 2.5 mm iso-cubic voxels, and the 
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sequences of slices in coronal directions were used as input for the model. The deep learning 

predicted values were normalized to yield the percent of predicted values of FVC and FEV1 (FVC% 

and FEV1%), and FEV1/FVC ratio.  Agreement performance was determined for all variables. 

Classification performance was evaluated using the clinically accepted cutoff values of FVC% < 

80, FEV1% < 80, and FEV1/FEV < 70% to simulate the screening capability of the developed 

model, 

Before getting the results with the whole dataset, preliminary experiments were undertaken to 

determine the operational parameters of the CNN model using data from a random subset. With 

results of these studies, an I3D network with a GoogleNet backbone and no pre-trained weights 

was chosen, as well as CT intensity with a 12-bits complete range. 

The pulmonary function test parameters predicted by the trained deep-learning model were 

compared with the spirometry-measured values, showing a higher degree of agreement in FVC 

than FEV1. FVC% and FEV1% as well as FEV1/FVC exhibited lower agreement performance 

than that of measured values. The area under the receiver-operator-characteristics curve was 0.90 

for FVC, 0.86 for FEV1, and 0.85 for FEV1/FVC when clinically established cutoff values were 

utilized to predict risk on the temporally-independent testing dataset. Applying the same cutoff 

settings on the deep-learning-derived values to the same testing dataset, accuracy was 89.6 % for 

FVC%, 85.9% for FEV1%, and 90.2% for FEV1/FVC ratio. Sensitivity and specificity were 61.6% 

and 94.3% for FVC%, 46.9% and 94.3% for FEV1%, and 36.1% and 95.7% for FEV1/FVC ratio.  

Positive predictive value and negative predictive value were 64.5% and 93.6% for FVC%, 64.0 

and 89.2% for FEV1%, and 46.2% and 93.6% for FEV1/FVC ratio. GradCAM analysis of FVC 

and FEV1 indicated distinct regions. GradCAM focused the anterior right lung region along the 

anterior chest wall for the FVC-predicting model. The left lung’s middle region was also slightly 

marked. In contrast, the GradCAM derived from FEV1 model emphasized the central areas of 

both lungs, especially the right lung. Additionally, the anterior and posterior regions of both lower 

lungs were noted. 

In conclusion, models based on deep learning that predict the measured value of FVC and FEV1 

were developed. In addition, preliminary experiments with subsets of data were conducted to 

determine the operational parameters of the network. This research is anticipated to serve as a 

baseline for future studies that employ a deep-learning approach to extract information regarding 

pulmonary function from CT scans.  



 

 iii 

Keyword: low-dose CT, pulmonary function, spirometry, convolution neural network, deep 

learning, GradCAM 



 

 iv 

Abbreviations 
 

AMC   Asan Medical Center 

AUROC  area under receiver operating characteristic curve 

AUPRC  area under precision recall curve 

CNN  convolutional neural network 

COPD  chronic obstructive pulmonary disease 

CT  computed tomography 

DL  deep learning 

FEV1  forced expiratory volume in one second 

FVC  forced vital capacity 

LDCT  low-dose chest computerized tomography 

PFT  pulmonary function test 
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1. Introduction 
 

Motivations 

Whenever new imaging techniques evolve, they endeavor to find the optimal use of those 

modalities in various contexts, not to mention in the clinical context. Through those endeavors, 

every imaging modality gets its seat in the medical field and is considered as the “gold standard” 

to diagnose diseases.  

It is the gold standard to detect abnormal structure from those structural images, in CT. But still 

there have been persistent efforts to get the hint of biomarkers associated with various phenomena 

in the human body. The area of these works is not only limited to disease-related biomarkers, but 

also includes the functions of each organ. It started with getting some visual parameters associated 

with the quantified function. With the development of CNN, which shows outstanding 

performance in image recognition, this technique was also applied to finding the biomarker for 

getting the functions of various organs, including IQ of the brain(1), etc.  

Since the results of two large, randomized clinical trials, the National Lung Screening Trial 

(NLST) and Nederlands–Leuvens Longkanker Screenings Onderzoek (NELSON), which shows 

a meaningful effect of lung cancer screening with low-dose CT (LDCT) on decreasing lung cancer 

mortality among the heavy cigarette smokers had been published, lung cancer screening utilizing 

LDCT became a well-established practice (2, 3). This data supports the recommendation for a 

routine LDCT for adults aged 50 to 80 years who have a 20 pack-year smoking history and 

currently smoke or have quit within the past 15 years (4). Although the risk of radiation exposure 

and overdiagnosis remains(5), the use of screening chest CT in the general population is expected 

to increase (6). 

On the contrary, the role of screening spirometry is still debatable (7, 8). Chronic obstructive 

pulmonary disease (COPD) is one of the leading causes of death worldwide (9, 10) and the 

prevalence of this disease among adults is relatively high. Spirometry is widely used to diagnose 

early cases of COPD, but the US Preventive Services Task Force found no net benefit to implement 

screening spirometry for the persons before they show symptoms (8).  In light of this, the Global 

Initiative for Chronic Obstructive Lung Disease only “advocates” active case finding as opposed 

to “recommending” screening spirometry in individuals who have symptoms or risk factors (11). 

It is challenging to perform spirometry in a mass screening scenario because it requires quality 

control through calibration and interpretation of acceptability and reproducibility (12). 
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With these recommendations, a significant portion of smokers may receive routine CT scans 

without spirometry. Therefore, LDCT screening could be a potential solution for the 

underdiagnosis of patients with chronic respiratory disorders if screening chest CT can predict 

lung function and identify examinees who need spirometry (13, 14). The risk factors for lung 

cancer, such as smoking, are shared by chronic respiratory disorders  (15), indicating the potential 

cost-effectiveness of CT screening. Smoking is a primary indication for CT screening. 

Thoracic imaging is a relatively new application for deep learning, a subfield of machine learning. 

In order to detect structural anomalies with annotations like nodules, pneumothorax, atelectasis, 

cardiomegaly, pleural effusion, and tuberculosis, a number of automated reporting methods have 

been created (16). In addition to such structural diagnostics, recent research has concentrated on 

functional issues including spirometry standardization (17) and COPD phenotyping (18). There 

is a correlation between pulmonary function indices and a variety of quantitative markers obtained 

from a chest CT (19-27). Therefore, we proposed that deep learning applied to LDCT can predict 

the outcomes of spirometry.  

 

Related study 
 

Some studies demonstrated the relationship between various CT-derived parameters with 

pulmonary functions. Those features varied in the range, including volumetry features, 

densitometry, features from airway segments, texture or radiomic features, and other tissues such 

as muscle and fat tissues. 

As preoperative research to get prognosis prediction on the results of lung surgery, some studies 

focusing on volumetry parameters predicting pulmonary functions were performed. 

The study with twenty-one healthy subjects who were candidates for lung donation shows a 

typical example. Chen et al. (2011) showed a significant correlation between forced vital capacity 

(FVC) and the total lung volume calculated from lung volumetry data from CT using simple linear 

regression, obtaining an R2 of 0.712. The correlation between total lung volume and spirometry-

measured total lung capacity (TLC) was also examined with an R2 of 0.622 (22).  

Iwano et al. extracted some CT parameters with CT attenuation values with thresholding. They 

showed that the emphysematous lung capacity, the volume of voxel under -900 HU within the 
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lung region, is negatively correlated with FEV1 with r = 0.56 (p < .001) with a simple linear 

regression model in the study with 64 patients with pulmonary nodules. For this study, the 

surrounding soft tissues and the bronchi were captured and eliminated with imaging analysis 

techniques  (19).  

Pu et al. (2012) extracted airway tree measurements such as trachea length and non-normalized 

total airway volumes from 548 patients with COPD to show the relationship between those values 

and pulmonary function parameters. This study demonstrated that nearly all pulmonary function 

parameters are associated with airway parameters with a significance of p < 0.01. They 

categorized pulmonary function parameters. Additionally, they showed the correlation of the 

airway parameters with COPD severity (27). In another study showing airway structure and lung 

function, Chen et al. (2016) built a model from automatically extracted airway features, 

suggesting characteristics relating to FEV1%, such as lumen space, within-segment homogeneity 

of each airway, and branch angles. Their work has meaning in that they obtained the data from a 

group of people with normal lung functions (24). 

Koo et al. demonstrated the link between PFT variables and a combination of quantitative CT 

parameters, such as emphysema index, air-trapping index, airway parameters (Pi10), parenchyma 

attenuation parameter, and lung volume changes, derived from MDCT in both exhale and inhale 

stage in stratified GOLD severity groups. They used automated segmentation software to derive 

these parameters. Their findings suggest that the association varies depending on the severity of 

COPD according to the GOLD criterion. They showed that the more severe COPD (higher GOLD 

stages), the worse the parenchymal attenuation parameters. Using multiple linear regression 

analysis, they also construct a model to predict FEV1/FVC or FEV1 using CT parameters for each 

subgroup. For the total dataset, the R2 values for predicting FEV1/FVC were R2 = 0.38, p < 0.001 

and R2 = 0.28, p < 0.001 for predicting FEV1. The goodness-of-fit of the chosen model and chosen 

variables varied based on the GOLD stage of the disease (25).  

Lafata et al. (2019) focused their view on finding the correlation between radiomic features, which 

includes features of intensity, morphology, fractal geometry, and higher-order features, as well as 

texture features, and pulmonary function parameters, using univariate statistical analysis and 

dynamic data clustering. They focused on FEV1 and DLCO, both the absolute measured values and 

the percent of predicted values (23).   
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McDonald et al. demonstrated a significant association between FVC and FEV1 and the pectoral 

muscle area in COPD patients. Adjusting for body mass index, age, sex, height, pack-years of 

smoking, and current smoking status, the FEV1 and FVC percentages improved by 0.67 and 0.4 

(p < 0.001) for each 1 cm2 increase in the pectoralis muscle area (26). 

These studies endeavored to get the hint of features from morphological images by finding an 

associating relationship. Though some studies found the features in the normal groups, most of 

them obtained their data from diseased groups such as COPD. Also, the results were drawn from 

a relatively small cohort with handicraft process. Moreover, the goal of these studies, except a 

few studies, was to search for the correlation between each feature and the functional information, 

not directly predicting pulmonary function from the CT scans.  

Recently, Schroeder et al. (2020) built a CNN model using a two-view chest radiograph with PFT 

data predicting COPD, defined as FEV1/FVC ratio < 0.7. Comparing the models based on the 

two-view radiographs and the radiologic report showed the importance of imaging features in 

predicting pulmonary functions. However, the efficacy of the 3D features from the CT scan over 

the 2D features from radiographs was not tested.  

 

Purpose 

In this study, we aimed to explore the potential of a deep learning based approach for predicting 

pulmonary function from low-dose chest CT. Since the deep learning approach is quite a new 

method for this task, we also conducted preliminary studies for finding suitable input processing 

method to get the optimal outcome from this approach. 

 

 

 

2. Predicting Pulmonary Function from Low-dose Chest CT 
 

 

2.1. Preliminary study with subset data for finding input parameters 
 

Because there is no known way to predict pulmonary function directly from a low-dose CT scan 

using deep learning, we conducted numerous preliminary investigations to determine the 

appropriate operational parameters for the deep learning network and experimental parameters. 

Two subsets of the obtained data were used. 
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The first subset data (later, subset 1) was a dataset initially designed to classify the two groups 

representing a different level of the FEV1 (% of predicted value) (later, FEV1%). The same 

number of CT scans are sampled from the two groups: FEV1% under or equal to 70% and FEV1% 

over or equal to 80%. To get a higher contrast between the severe and normal groups, the patients’ 

data with borderline FEV1% (70% < FEV1% < 80%) were excluded.  Each group was divided 

into training, tuning, and validation dataset with a ratio of 8:1:1 based on patient ID (Table 1). In 

this dataset, several patients had multiple CT scans. The second version of subset data (later, 

subset 2) was randomly sampled to have 3000 patient IDs and paired CT scans from January 2015 

to December 2017. Only the first data were included for the patients with multiple visits during 

this period in this subset. 

The training was completed across 150 epochs, and the model was picked from among the 100-

150 epochs having the lowest tuning loss. The additional information on the other training hyper-

parameters was described in 2.2. 

The input parameters with better agreement performance were considered as better parameters 

for the network training for this task. Root mean squared error (RMSE), mean absolute error 

(MAE) and concordance correlation coefficient (CCC) were used to evaluated agreements 

between spirometry parameters and the deep learning predicted values. Classification evaluation 

metric such as area under receiver operating characteristics (AUROC), area under precision-recall 

curve (AUPRC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative 

predictive value (NPV) are used to classify respiratory risky group: FEV1% < 80 and FVC% < 80.  

Num. of CT 

images 
(Num. of patient ID) 

Total FEV1 % ≤70 FEV1 % ≥80 

2403 (2027) 1201 (856) 1202 (1171) 

Training 1928 (1622) 968 (685) 960 (937) 

Tuning 235 (203) 115 (86) 120 (117) 

Validation 240 (202) 118 (85) 122 (117) 

1) 2D vs 3D comparison 

Two experiments were undertaken to evaluate the merit of predicting pulmonary function using 

3D features than the model using 2D features.  

Table 1 Constitution of subset data 1 
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Materials and Methods: Two experiments were undertaken to evaluate the merit of predicting 

pulmonary function using 3D features than the model using 2D features.  

In the first experiment, we compared the two models employing 2D and 2.5D images, which were 

trained to classify risky groups over the non-risky group of FEV1%: FEV1% ≤70 as the risky 

group and FEV1% ≥ 80 as the non-risky group. The 2D model was trained with a representative 

slice with a single channel, whereas the 2.5D model was trained using five slices, including two 

slices before and after the representative slice (Figure 1). Using a rule-based approach, a sample 

slice with the most distinct view of the carina of trachea was chosen. Both the two models utilized 

input images that normalized voxel values between -1450 and 50 into 0 and 1 (lung windowing, 

WL: -700, WW: 1500). 

In the next experiments, the models trained with 2D and 3D images to regress the value of FVC 

(L) were compared. Two 3D models were examined: one with pre-trained weights inflated from 

the 2D model (3D, inflated weights in Table 3) and one without pre-trained weights (3D, scratch 

in Table 3). Additionally, we compared two network backbone architectures, namely GoogLeNet 

(Inception-v1) (28) and Inception-v3 (29). The input images were processed in the same manner 

in the previous experiment. Thirty-two frames, 16 frames each before and after the representative 

slice of carina index, were used in the 3D model. Because of the limit of GPU memory available 

Figure 1 Process of finding representative slice for 2D model. The slice with carina of trachea was found 

by rules-based model with simple thresholding. The trachea was considered as the largest cluster in assigned 

region in the area. 
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at that time (24 GB), the training couldn’t have a fair comparison with the batch size of the model: 

the 2D model used a batch size of 10 while the 3D model, used 8. Augmentation of random 

rotation (±10 degrees) and random crop (random selection within ±20 slices) were applied. 

Results:  In the experiment comparing 2D and 2.5D, the model trained with five slices 

outperformed the 2D model in classification experiments, with an AUROC of 0.87 and an 

accuracy of 76.67 % [184 of 240], compared to 0.75 and 67.08 %, respectively (Table 2). 

In trials comparing 2D and 3D, the 2D model yielded RMSE values of 0.515, 0.481, MAE values 

of 0.402 and 0.375, and R2 values of 0.664 and 0.774 for the Inception-v1 and Inception-v3 

backbones, respectively. RMSE of 0.371 and 0.388, MAE of 0.296 and 0.304, and R2 of 0.826 

and 0.809 were noted for the models trained with the 3D image with 32 frames utilizing inflated 

weights from the 2D model, respectively, with each backbone.  With both backbones, the 

performance of the 3D model was much superior to that of the 2D model, with around 1 (L) less 

RMSE. Comparing the two 3D models with and without the inflated pre-trained weights from the 

2D model, the model trained from scratch achieved a higher agreement with both backbone 

networks in experiments (Table 2 and Figure 2) 

 

 

Figure 2  Scatter and Bland-Altman plots of FVC prediction using 2D and 3D input (Left) 2D model 

test results showing bias of -0.02 upper LOA 0.99 (L) and (Right) showing results of 3D, from scratch 

model with bias of -0.0005 and upper LOA 0.69 (L) 



 

 ８ 

 

 With 1 slice With 5 slices 

TP 84 89 

FN 34 29 

FP 45 27 

TN 77 95 

AUROC 0.75 0.87 

Accuracy (%) 67.08 76.67 

Sensitivity (%) 71.19 75.42 

Specificity (%) 63.11 77.87 

PPV (%) 65.12 76.72 

NPV (%) 69.37 76.61 

 

 

backbone network 
evaluation 

metric 
2D 3D, inflated weights 3D, scratch 

GoogLeNet 

(Inception-v1) 

RMSE 0.515 0.371 0.353 

MAE 0.402 0.296 0.282 

R2 0.664 0.826 0.842 

Inception-v3 RMSE 0.481 0.388 0.364 

MAE 0.375 0.304 0.281 

R2 0.707 0.809 0.832 

 

 

  

Table 2 Result for classification based on FEV1 %, 2D model, per image evaluation 

Table 3 FVC (L) prediction results of 2D and 3D models 
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2) Windowing Selection 

Materials and Method: We compared the complete range of CT intensity from the original 

image (-1024, 3071), lung windowing (-1450, 50; WL: -700, WW: 1500), and mediastinum 

windowing (-200, 300; WL: 50, WW: 500) (Figure 3). Three models were trained to use a single 

input channel to predict measured value of FEV1 and FVC (L), respectively. Each windowing’s 

intensity was standardized to a range between 0 and 1.  

Results:  The results from single experiments for each setting were compared. The model trained 

with the image normalized with mediastinum windowing showed the worst performance with 

AUROC with 0,80 and 0.85 for FEV1 and FVC, respectively (Table 4-5). For FEV1 prediction, 

the agreement performance between the spirometry and deep learning predicted values were 

comparable for the models using the range of 12bit full intensity range and the lung windowing. 

With similar AUROC of 0.85 and 0.84 for 12bit and lung windowing, other metrics were all higher 

for the model using 12bit input (Table 4). For FVC prediction, the agreement metric for measured 

values (FVC (L)) and for standardized value (FVC%) were all slightly higher in the 12-bit model, 

but AUROC, AUPRC, and accuracy were better in the lung windowing model (Table 5).  

 

 

 

  

Figure 3 Examples of various windowing selections  
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 12bit range lung mediastinum 

FEV1 (L)    

RMSE 0.302 0.314 0.323 

MAE 0.236 0.243 0.249 

CCC 0.884  0.867 

    

FEV1 %pred (%)    

RMSE 9.06 9.34 9.81 

MAE 7.14 7.34 7.57 

CCC 0.665 0.654 0.579 

AUROC 0.85 0.84 0.80 

AUPRC 0.53 0.48 0.42 

Accuracy (%) 86.1 84.8 85.0 

Sensitivity (%) 47.3 44.0 38.5 

Specificity (%) 93.1 92.1 93.3 

PPV (%) 55.1 0.50 50.7 

NPV (%) 90.8 90.2 89.4 

 

 

 12bit range lung mediastinum 

FVC (L)    

RMSE 0.297 0.318 0.319 

MAE 0.237 0.252 0.249 

CCC 0.930 0.921 0.919 

    

FVC % (%)    

RMSE 7.17 7.60 7.53 

MAE 5.69 6.01 5.94 

CCC 0.75 0.736 0.715 

AUROC 0.88 0.89 0.85 

AUPRC 0.56 0.60 0.54 

Accuracy (%) 87.6 88.3 87.1 

Sensitivity (%) 52.4 39.3 47.6 

Specificity (%) 93.4 96.3 93.6 

PPV (%) 56.4 63.5 54.8 

NPV (%) 92.3 90.7 91.6 

Table 4 FEV1 prediction outcomes for comparing various windowing selections (anti-aliasing, 140 

frame, aligned by back) 

Table 5 The same as Table 4, but for FVC prediction 
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3)  Number of channels 

Materials and Methods: We compared performance of the model trained with 3 channel (3ch) 

or 1 channel (1ch) images. The GPU memory usage and the time consumption were also 

compared. The 3ch model utilized 12-bit full range, lung windowing, and mediastinum 

windowing and the 1ch model, 12-bit full range. 12-bit model was chosen since it has best 

performances among the three-windowing selection, though the difference was not tested as 

statistically significant. The input of each channel was rescaled to have float between the 0 to 1. 

The second subset data was used to derive the results.  

Results: The experimental results for predicting FEV1 (L) and FVC (L) with 100 frames were 

summarized in Table 6. The 3ch model shows slightly better performance with lower MAE and 

RMSE, and higher R2. Noting that they are the results from the single experiment for each, the 

differences are not seemed to be statistically different considering the stochastic nature of the 

deep learning network. The 3-channel model needs GPU of more memory even with the limit of 

the input size. In Table 7, we compared the performance of each 3 and 1 channel model along 

with the resources they needed for training. The 3-channel model need GPU with bigger memory 

and more time for training① , while the performance does not show merit with statistical 

significance.   

 

FEV1 prediction trained with 100 frames FVC prediction trained with 100 frames 

 3ch 1ch 

MAE 0.2228 0.2299 

RMSE 0.2891 0.2942 

R2 0.8074 0.8005 
 

 3ch 1ch 

MAE 0.2307 0.2338 

RMSE 0.3000 0.3027 

R2 0.8666 0.8641 
 

  

 
① Time consumption varies and can be decreased depending on the efficiency of the 

scripts, but still will be proportional to written among of the time. The one channel 

model with 140 frames can be occasionally run on the 24GB GPU, but failed sometimes 

with OOM error.  

Table 6 Effects of the number of channels  
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Number of 

input 

channels 

Number of 

frames 
RMSE MAE R2 GPU memory used Time consumption 

3ch 100 0.289 0.223 0.807 48GB 167 epoch / 7 days 

1ch 120 0.290 0.226 0.806 24GB 166 epoch / 1.5 days 

1ch 140 0.293 0.226 0.802 32GB / 24GB 200 epoch / 4 days 

 

 

4)  Alignment of the body 

Materials and Methods: The two models trained to predict FEV1 with different body positions 

were evaluated to examine the effect of the input images’ body position on the performance of 

CNN. The body segments were either located at the center or the back line of the coronal axis, 

respectively. The experiment was performed with subset data 2, with 140 frames of single channel 

normalized to the range of (0, 1) from the 12bit full range (-1024, 3071). RMSE were used for 

the comparison. 

Results: RMSE from the model using body-centered image achieved 0.293 L), while the others 

with back-positioned image achieved 0.3060 (Table 8). 

Body alignment y-axis Num. of frames Num. of channels RMSE (L) 

Centered 140 1 0.2929 

Back-aligned 140 1 0.3060 

 

 

5) Number of frames 

Materials and Methods: The models trained with various number of frames (image size) to 

predict FEV1 were compared. In the first experiment, the body segments in each image were 

located in the center of the y axis and the frames are chosen symmetrically for the location of 

chosen representative slice used in experiment 1) 2D vs 3D comparison. For the experiment of 

120 frames, we eliminated 10 frames each at the beginning and the end position. In the second 

experiment, the image with back-positioned body were used. Input image was sequentially chosen 

Table 7 Memory and time efficiency of 3- and 1-channel models. 

Table 8 Experimental results by the location of the body segment  
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from the back position depending on the number of frames. Randomly chosen toy dataset with 

number of 3000 patient data used in these experiments (subset data 2). 

Results: The performances among the model using the 100 – 140 frames sampled from the central 

region didn’t show significant differences in predicting both R2 of 0.865 and 0.864 for predicting 

FVC, 0.801 to 0.806 for predicting FEV1 with (Table 9 – 10). It showed better agreement and 

classification performance with 140 frames with the image where body segments aligned with the 

back side, though the statistical significance still is not guaranteed (Table 11 – 12).  

 

 120 frames 100 frames 64 frames 

RMSE 0.302 0.303 0.317 

MAE 0.236 0.234 0.239 

R2 0.865 0.864 0.852 

 

 140 frames 120 frames 100 frames 64 frames 

RMSE 0.293 0.290 0.294 0.316 

MAE 0.226 0.225 0.230 0.247 

R2 0.802 0.806 0.801 0.770 

 

  

Table 9 FVC (L) regression results with body-centered images over different number of frames. 

Table 10 The same as Table 9, but for FEV1 (L). 
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 140 frames 120 frames 100 frames 

FVC (L)    

RMSE 0.297 0.338 0.306 

MAE 0.237 0.266 0.237 

CCC 0.930 0.912 0.928 

    

FVC %pred (%)    

RMSE 7.17 8.15 7.29 

MAE 5.69 6.37 5.67 

CCC 0.75 0.70 0.75 

AUROC 0.88 0.88 0.89 

AUPRC 0.56 0.56 0.59 

Accuracy (%) 87.6 88.0 88.48 

Sensitivity (%) 52.4 32.1 48.8 

Specificity (%) 93.4 97.1 85.0 

PPV (%) 56.4 64.3 61.2 

NPV (%) 92.3 89.8 91.9 

 140 frames 120 frames 100 frames 

FEV1 (L)    

RMSE 0.302 0.310 0.320 

MAE 0.236 0.243 0.244 

CCC 0.884 0.880 0.870 

    

FEV1 %pred (%)    

RMSE 9.06 9.36 9.62 

MAE 7.14 7.36 7.39 

CCC 0.665 0.648 0.619 

AUROC 0.85 0.81 0.81 

AUPRC 0.53 0.42 0.45 

Accuracy (%) 86.1 82.8 85.0 

Sensitivity (%) 47.3 38.5 41.8 

Specificity (%) 93.1 90.7 92.7 

PPV (%) 55.1 42.7 50.7 

NPV (%) 90.8 89.2 90.0 

 

 

  

Table 11 FVC (L) regression results with back-aligned images over different number of frames. 

 

 

Table 12 The same as Table 11, but for FEV1 (L). 



 

 １５ 

Discussion 

In our preliminary experiments, we found that models with 2.5D or 3D features predicted 

spirometry parameters substantially better than 2D models. However, the effect of pre-trained 

models with inflated weights seems unclear. Comparing the windowing options, the model that 

normalized the complete 12bit range of the input array to 0 to 1 had the highest agreement score 

CCC of 0.88 and 0.93 for FEV1 and FVC prediction, respectively, followed by lung 

and mediastinum windowing. However, the classification scores did not always have same order 

across the windowing selection. 

Comparing the results of the 3ch model and the 1ch model with various number of frames, the 

RMSE, MAE, and R2 showed superior performance in 3ch models; however, the difference 

between the RMSE and MAE values for the model with three channels and the model with a 

single channel did not exceed 0.015 (L) for any of the results. In addition, the single-channel 

model with more frames demonstrated equivalent or superior performance while consuming less 

GPU memory and time consumption. 

For models employing input images from the central region, the number of frames had no effect 

on the outcomes. In contrast, the model that utilized the input sequentially from the back had 

marginally superior performance, although statistical significance cannot be guaranteed. FEV1 

prediction models appear to have a larger difference. In a previous study, Kwack et al. 

demonstrated a negative correlation between CT-measured thoracic fat volume and FEV1% and 

FEV1/FVC percent in a cohort of 18-80-year-old health screening participants (21). McDonald et 

al. demonstrated a substantial association between FVC and FEV1 and the area of the pectoral 

muscle in COPD patients (26). Neither work addresses the measured values of FVC and FEV1, 

but we can guess that there is substantial correlation between muscle or fat composition measured 

in CT and pulmonary function.  Since the body segment is aligned with the back, the effect of 

removing the frontal portion of the body could not be the same for all patients, with larger groups 

being affected more than smaller groups. Muscle and fat from the omitted slices may have a 

stronger correlation with pulmonary function, and additional research will be required to confirm 

this hypothesis. 

For these preliminary studies, we conducted only one experiment in a single environment using 

a randomly selected portion of data. Due to the stochastic nature of finding the optimal minimum 

for the neural network, caution is required when comparing the results from single trials.  
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2.2 Prediction of Pulmonary function with chosen parameters 
 

Material and Methods 
 

1) Dataset 

We retrospectively obtained the patients’ data from the health screening center in Asan Medical 

Center, Seoul, the Republic of Korea (later, AMC), from January 2015 to December 2018. The 

examinees who underwent low-dose chest CT and spirometry on the same day were chosen. Only 

the first records were included for examinees who had taken the examination multiple times 

during the study period. The data acquired from January to December 2018 were set aside as 

temporally-independent testing dataset (n = 2720), and the data from January 2015 to December 

2017 were used as a development dataset (n = 13,428). The development dataset was split into 

training (n = 9,394; 70%), tuning (n = 1,343; 10%), and validation (n = 2,687; 20%, later, internal 

validation) dataset (Figure 4).  

The Institutional review board of AMC approved this retrospective study and waived the 

requirement for informed written consent (IRB no. 2019-0061). 

 

  

Figure 4 Data split of collected dataset. 
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2) Low-dose CT scan 

The examinees underwent chest CT using SOMATOM Definition Flash CT system (Siemens 

Healthineers, Forchheim, Germany), LightSpeed VCT or Discovery CT750HD (GE Healthcare 

Technologies, Milwaukee, WI).  We employed 2.5-mm thickness axial CT images of the entire 

thorax with full inspiration (512 x 512 matrix; 64 x 0.6mm or 64 x 0.625mm collimation; 20 or 

25 mAs at 120 kV; 1 pitch; I50f or CHST kernel).  

3) Spirometry 

An experienced laboratory technician performed spirometry using a vMax 20 spirometer (Viasys, 

San Diego, CA, USA) in accordance with ATS/ERS guidelines (12). FVC and FEV1 were 

measured by spirometry in liters (FVC, FEV1 in Figure 5). The percentage of predicted values 

(FVC% and FEV1% in Figure 5) were calculated using the predicted values representing the 

normal population, which were determined using reference equations derived from representative 

samples of the Korean population (30). Normal spirometry results were determined by a pre-

bronchodilator FEV1/FVC ratio over 70 % and FVC% and FEV1% over 80% of the predicted 

values. Airflow limitation was determined as a FEV1/FVC ratio under 70%. 

4) Training deep learning model  

The deep morphology models predicting PFT outcomes from LDCT scan are based on the inflated 

3D ConvNet (I3D) (31) having global average pooling and one fully connected layer of 512 nodes 

instead of the final fully connected layer which was used in original I3D network (Figure 6). Two 

distinct models were trained to predict each values of FVC and FEV1 upon their paired low-dose 

CT via a linear output layer by minimizing the mean squared error loss (Figure 5). 

Due to the restricted processing capabilities of existing graphics processing units (GPU), we were 

unable to exploit CT scans with the original resolution, therefore we resampled them to have 

2.5mm iso-voxel. After resizing each CT scan, the images were adjusted using the detected body 

area to be aligned by their posterior, and then cropped or padded to have 180x140x178 size. Our 

deep morphology models utilized the coronal image sequences of resampled CT scans as input 

pictures. NVIDIA Tesla V100 was utilized to train the deep morphology models (32GB). The 

initial learning rate for the Adam optimizer was 0.001 and then was reduced with a factor of 0.7 

when a metric has stopped improving for 10 epochs. A batch size of 10 was used.  
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Using the predicted FVC and FEV1 by deep learning models (FVCDL and FEV1DL), we simulated 

the respiratory high-risk group’s screening test with FVC%DL, FEV1%DL, and FEV1/FVCDL ratio. 

FVC%DL and FEV1%DL were computed using Korean reference equations in the same manner as 

the gold standard (30). Classification of the respiratory high-risk group was based on normal 

spirometry findings defined in the section above. 

5) Interpretation of the convolution neural network with GradCAM 

To interpret how the proposed deep morphology models made the predictions, we employed 

Grad-CAM which visualizes the saliency area through extracting features in a layer of CNN. For 

capturing the importance, we computed the gradient for the linear output layer with respect to 

feature map of the concatenate layer after the 5th inception module.  

GradCAM was suggested to understand and visualize the inner logic of deep learning models 

using convolutional layers. It highlights where a convolution layer’s assigned feature map highly 

influences output of the network. Since the output value of our model was not the likelihood for 

potential class but the value linearly proportional to the abstraction of the feature map, the 

interpretation of the GradCAM was not straightforward. We interpreted the changes in the region 

in a feature map has a positive correlation in predicting the higher value of each output variable. 

6) Evaluation metrics for the model 

The performance of the proposed deep learning method was assessed on two distinct datasets: an 

internal validation dataset and a temporally-independent testing dataset. The mean absolute error 

(MAE), root mean squared error (RMSE), and concordance correlation coefficient (CCC) were 

computed to determine agreements between ground truth and anticipated PFT values. Also 

evaluated were Bland-Altman plots with bias estimates and 95% limits of agreement (LOA). Area 

under the receiver-operating-characteristics curve (AUROC), area under the precision-recall 

curve (AUPRC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative 

predictive value (NPV) were utilized to evaluate the classification performance based on the 

clinically established cut-off values mentioned in section 3) Spirometry. Unless otherwise 

indicated, values are presented as the mean ± standard deviation. 
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Figure 5 Design of deep learning system for predicting pulmonary function tests from chest CT.
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Figure 6 I3D network architecture. 
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Results 
 

1) Clinical characteristics of the study population 

A total of 16148 examinees were split into two cohorts based on the time of their first visit: a 

development dataset of 13428 examinees (January 2015 to December 2017) and a temporally 

independent testing dataset of 2720 examinees (January 2018 to December 2018; Figure 4). The 

mean ages were 54.6 ± 9.7 and 54.1 ± 10.9 years in the development and testing datasets, 

respectively. There were 9238 (68.8%) male subjects and 5848 (58.5%) ever smokers in 

development dataset, while 1742 (54.0%) males and 1480 (54.4%) ever smokers in testing dataset. 

1%–6% of the participants had a history of a chronic respiratory condition such as COPD, asthma, 

or tuberculosis. FEV1, FVC, and FEV1/FVC values in the development set were 3.04 ± 0.67 L, 

3.92 ± 0.83 L, and 77.8 ± 6.8 percent, respectively. In the testing set, these values were 3.85 ± 

0.84 L, 2.99 ± 0.67 L, and 77.8 ± 6.7 percent, respectively. (Table 13) 

2) Prediction performance of the deep learning model 

The prediction performance measures of our proposed models on the development and temporally 

independent testing dataset are summarized in Table 14 and Figures 7 and 8. The MAE, RMSE, 

and CCC were 0.223, 0.286, and 0.935, respectively, for the agreement between FVC and FVCDL, 

and 0.216, 0.276, and 0.902, for the agreement between FEV1 and FEV1DL. This prediction was 

fairly robust in the temporally-independent testing dataset, with MAE, RMSE, and CCC of 0.220, 

0.286, and 0.940 for FVC versus FVCDL, and 0.218, 0.277, and 0.907 for FEV1 versus FEV1DL.  

In the internal validation, the MAE, RMSE, and CCC were 5.251, 6.716, and 0.783, respectively, 

for agreements between FVC% and FVC%DL, 6.501, 8.282, and 0.708 for agreements between 

FEV1% and FEV1%DL, and 4.703, 6.084, and 0.580 for agreements between FEV1/FVC and 

FEV1/FVCDL. Applying the same for the temporally-independent testing dataset; the MAE, 

RMSE, and CCC were 5.239, 6.798, and 0.787, respectively, for FVC% versus FVC%DL, 6.658, 

8.484, and 0.688 for FEV1% versus FEV1%DL, and 4.768, 6.101, and 0.578 for FEV1/FVC versus 

FEV1/FVCDL. 
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Development dataset 

(n = 13 428) 

Temporally-independent 

testing dataset 

n = 2720) 

p value 

Age, years 54.6 ± 9.7 54.1 ± 10.9 <.05 

Sex, male 9238 (68.8%) 1742 (64.0%) <.01 

Body mass index (kg/m2) 23.9 ± 3.1 23.9 ± 3.1 .39 

Smoking history   <.01 

Current smoker 3380 (25.2%) 644 (23.7%)  

Ex-smoker 4468 (33.3%) 836 (30.7%)  

Never smoker 5555 (41.4%) 1239 (45.6%)  

Smoking amount 

(smokers only), pack years 

28.8 ± 17.5 33.5 ± 17.5  

Respiratory disease history    

Tuberculosis  715 (5.3%) 149 (5.5%) .75 

Asthma 312 (2.3%) 70 (2.6%) .43 

COPD 158 (1.2%) 30 (1.1%) .74 

Lung function      

FEV1 (L) 3.04 ± 0.67 2.99 ± 0.67 <.01 

FEV1 (% of pred.) 90.4 ± 11.7 89.6 ± 11.5 <.01 

FVC (L) 3.92 ± 0.83 3.85 ± 0.84 <.01 

FVC (% of pred.) 91.0 ± 10.8 90.4 ± 11.2 <.05 

FEV1/FVC (%) 77.8 ± 6.8 77.8 ± 6.7 .97 

Note. All data are presented as mean ± standard deviation or number (%), unless otherwise indicated. 

Data were compared using Pearson’s Chi-squared test and Welch’s t-test. 

FEV1, forced expiratory volume in one second; FVC, forced vital capacity. 

  

 

Table 13 Baseline characteristics of the study population. 
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3) Risk prediction using the deep learning model 

The classification performance for risk groups according to FVC%DL, FEV1%DL, and 

FEV1/FVCDL are summarized in Table 15 and confusion matrices, ROC curves, and precision-

recall curves for those classification are shown in Figure 9-11. 

In the internal validation, the classification of the respiratory high-risk group achieved AUROC 

and AUPRC of 0.91 and 0.62 for FVC%, 0.87 and 0.59 for FEV1%, and 0.84 and 0.45 for 

FEV1/FVC. The same cutoff settings were applied on the deep-learning-derived values to derive 

following results. Accuracy was 88.9 % [2388 of 2687] for FVC%, 87.4% [2348 of 2687] for 

FEV1%, and 90.5% [2431 of 2687] for FEV1/FVC ratio. Sensitivity and specificity were 64.2% 

[212 of 330] and 92.3% [2176 of 2357] for FVC%, 49.9% [202 of 405] and 94.0% [2146 of 2282] 

for FEV1%, and 40.8% [104 of 255] and 95.7% [2327 of 2432] for FEV1/FVC ratio.  Positive 

predictive value and negative predictive value were 53.9% [212 of 393] and 94.9% [2176 of 2294] 

for FVC%, 59.8% [202 of 338] and 91.4% [2146 of 2349] for FEV1%, and 49.8% [104 of 209] 

and 93.9% [2327 of 2478] for FEV1/FVC ratio. 

For the temporally-independent testing dataset, the same classification scheme was applied and 

achieved robust results. AUROC and AUPRC were achieved as 0.90 and 0.68 for FVC%, 0.86 

and 0.61 for FEV1%, and 0.85 and 0.40 for FEV1/FVC ratio. Applying the same cutoff settings 

on the deep-learning-derived values to the same testing dataset, accuracy was 89.6 [2436 of 2720] % 

for FVC%, 85.9% [2337 of 2720] for FEV1%, and 90.2% [2453 of 2720] for FEV1/FVC ratio. 

Sensitivity and specificity were 61.6% [242 of 393] and 94.3% [2194 of 2327] for FVC%, 46.9% 

[226 of 482] and 94.3% [2111 of 2238] for FEV1%, and 36.1% [91 of 252] and 95.7% [2362 of 

2468] for FEV1/FVC ratio.  Positive predictive value and negative predictive value were 64.5% 

[242 of 375] and 93.6% [2194 of 2345] for FVC%, 64.0% [226 of 353] and 89.2% [2111 of 2367] 

for FEV1%, and 46.2% [91 of 197] and 93.6% [2362 of 2523] for FEV1/FVC ratio. 
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Figure 7 Agreement between the deep learning-predicted FVC (L) and FEV1 (L) and spirometry-measured values for internal validation (A) and temporally-

independent testing (B). Upper panels show ground truth values versus predicted values of, where the diagonal lines of scatter plots represent the ideal lines for perfect 

prediction. Lower panels show Bland-Altman plots. 
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Figure 8 The same as Figure 7, but for FVC%, FEV1%, and FEV1/FVC.
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Internal validation Temporally-independent testing 

MAE RMSE CCC Bias LOA MAE RMSE CCC Bias LOA 

FVC (L) 0.223 0.286 0.935 −0.03 (−0.58, 0.53) 0.220 0.286 0.940 −0.01 (−0.57, 0.55) 

FEV1 (L) 0.216 0.276 0.902 0.01 (−0.53, 0.55) 0.218 0.277 0.907 0.04 (−0.49, 0.58) 

FVC (% or pred.) 5.3 6.7 0.783 −0.63 (−13.74, 12.47) 5.2 6.8 0.787 −0.27 (−13.59, 13.04) 

FEV1 (% of pred.) 6.5 8.3 0.708 0.45 (−15.76, 16.66) 6.7 8.5 0.688 1.53 (−14.83, 17.89) 

FEV1/FVC (%) 4.7 6.1 0.580 1.01 (−10.75, 12.77) 4.8 6.1 0.578 1.57 (−9.99, 13.12) 

Note. FEV1, forced expiratory volume in one second; FVC, forced vital capacity; MAE, mean absolute error; RMSE, root mean square error; CCC, concordance 

correlation coefficient. Bias and LOA (limits of agreement) are from the Bland-Altman plot.  

Table 14 Performance of the deep learning model for predicting PFT results 
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Internal validation Temporally-independent testing 

AUROC AUPRC Acc. Sen. Spec. PPV NPV AUROC AUPRC Acc. Sen. Spec. PPV NPV 

FVC (% of pred.) 0.91 0.62 88.9 64.2 92.3 53.9 94.9 0.90 0.68 89.6 61.6 94.3 64.5 93.6 

FEV1 (% of pred.) 0.87 0.59 87.4 49.9 94.0 59.8 91.4 0.86 0.61 85.9 46.9 94.3 64.0 89.2 

FEV1/FVC ratio 0.84 0.45 90.5 40.8 95.7 49.8 93.9 0.85 0.40 90.2 36.1 95.7 46.2 93.6 

Note. FEV1, forced expiratory volume in one second; FVC, forced vital capacity; AUROC, area under the receiver operating characteristics curve; AUPRC, area under 

the precision-recall curve; Acc., accuracy; Sen., sensitivity; Spec., specificity; PPV, positive predictive value; NPV, negative predictive value. 

Table 15 Risk prediction performance of the deep learning model 
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Figure 9 Confusion matrices for risk prediction on FVC%, FEV1%, and FEV1/FVC for internal validation (A) and temporally-independent testing (B). 

Risky groups are categorized using deep learning model predictions and compared with ground-truth spirometry results using the same clinical cut-off values. Each cell 

shows sensitivity, false positive ratio, false negative ratio, and specificity. True positive, false positive, false negative, true negative, in that order. 
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Figure 10 Receiver operating characteristic curves for risk prediction on FVC%, FEV1%, and FEV1/FVC for internal validation (A) and temporally-

independent testing (B). 
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Figure 11 Precision-recall curves for risk prediction on FVC%, FEV1%, and FEV1/FVC for internal validation (A) and temporally-independent testing (B). 
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4) Interpretation of the deep learning model using saliency mapping 

Figure 12 depicts typical images of saliency maps generated by the deep learning algorithm for 

predicting FVC and FEV1. To generalize the highlighted region from GradCAM, the average 

intensities of 200 GradCAM samples were superimposed on a randomly chosen background chest 

CT background (in short, averageCAM). The averageCAM for FVCDL and FEV1DL demonstrates 

distinct regions in both lungs. The averageCAM for FVCDL emphasizes the anterior right lung 

region along the anterior chest wall. The central area of the left lung is also weakly highlighted. In 

contrast, the averageCAM from the FEV1DL model emphasizes the center regions of both lungs, 

particularly the right lung. Additionally, it illustrates the anterior and posterior regions of both 

lower lungs. 

 

 
 

Discussion  
 

In our study, two models which were separately trained to predict the measured value of FVC and 

FEV1 with 3D features directly extracted from low-dose CT scan by using convolutional neural 

Figure 12 AverageCAM analysis of the model for FVC prediction (A) and FEV1 prediction (B) 



 

 ３２ 

networks achieved nice agreement performance with the high concordance correlation coefficient 

of 0.940 and 0.907 for FVC and FEV1, respectively. While the clinically used parameters, the 

percent of predicted FVC (FVC %), the percent of predicted FEV1 (FEV1 %), and FEV1/FVC, 

which are calculated from the deep learning predicted values, showed worse performance than 

the measured values, the AUROC, a representative measure for classification performance, still 

showed 0.91, 0.87, and 0.84 for FVC%, FEV1%, FEV1/FVC, respectively. 

In our study, the agreement between ground truth and predicted values was better for the measured 

values than for the predicted values. The classification performance from which we can get a 

sense of simulating screening test didn’t show reliable results yet with low sensitivity and positive 

predictive value.  In clinical practice, percentages of predicted values are used to identify disease 

severity and risk categories, although they have limits due to the reference equations. Age, height, 

and sex are employed to create the reference equations, although these variables have complex 

interactions when attempting to equate the expected lung function in healthy people (32, 33). 

Therefore, normal lung function demonstrates a broad range of variability for the majority of 

pulmonary function measures, and this variability varies with age (34). This constraint in 

predicting normal reference values may reduce the predictive power of FEV1%DL and FVC %DL, 

despite our use of a reference equation developed from a large local population (30). 

Several CT parameters measuring small airway disease (20, 35), emphysema (35) were identified 

as being related with pulmonary function deterioration and we may expect those features to be 

incorporated into the automated deep learning application. However, the most highlighted region 

in the averageCAM predicting FEV1 were quite apart from the peripheral area. This may be due 

in part to the down-sampling methods we adapted. In this exploration study, we attempted to use 

the entire chest CT for training to identify hints of regions related with predicting pulmonary 

function in CT scans, and not just the lung region. Due to the constraint of GPU capacity, we 

resampled the CT scan, which initially had pixel spacing of 0.69 (0.05) ⅹ 0.69 (0.05) ⅹ 2.51 (0.07)  

mm3 in the development dataset, into identical 2.5 mm iso-cubic voxels. As each voxel in the CT 

scan becomes larger because of our preprocessing procedure, the contrast between the small cell 

sections may be diminished, resulting in the loss of their physio-morphological information, 

hence diminishing the importance of the region in calculating the output value.  

Several limitations exist in our investigation. 
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Our model was trained and validated using data from a single center, therefore its performance 

may vary when applied to data from another center. To address this issue with generalizability, 

we have divided the data along the time axis into the development dataset and a temporally 

independent testing dataset. The FVC and FEV1 exhibited remarkably good concordance. 

However, this model must be interpreted and applied with caution to the data received from other 

institutions. 

Due to the radiation exposure risk associated with CT scans, low-dose chest CT screening for 

lung cancer is recommended for individuals with risk factors. Our dataset is derived from a health 

check-up center, where the visitors are expected to have relatively healthy, normal condition to 

the expected LDCT scan group who may be older male who have a longer pack-year history. Our 

dataset is derived from a health check-up center, where the visitors are expected to have relatively 

healthy, normal condition to the expected LDCT scan group who may be older male who have a 

longer pack-year history. In a previous study, the relationship between CT parameters and 

spirometry results are shown to be not linear but changed depending on COPD severity (25). The 

imaging features associated with predicting pulmonary function generated from the convolution 

might vary in other datasets with differing characteristics. Therefore, further studies involving 

different characteristics are needed to gain a solid understanding of this issue. 

In this study, we employed the I3D model, a convolution network first designed for action 

recognition in video frames, with a sequence of coronal CT scan slices as input. This was chosen 

because developing this network had an advantage over the 3D convolution network given the 

limited GPU resources. While we explored some preprocessing methods that might influence the 

experimental results and chose some settings to implement, our experiments were conducted 

using only a single network architecture, without a thorough examination of the various network 

designs that would be optimal for completing our task. Given that the stride and kernel size were 

designed for the unique objective of the natural video dataset (31), it is anticipated that there 

exists a combination of network parameters suitable for resolving our issue. Later, the search for 

networks that match the properties of images and structures should be conducted. We believe this 

is work is anticipated to serve as a benchmark for similar future research.  
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3. Conclusion 

In this retrospective study, we investigated the potential of low-dose CT as a screening tool to 

find risky groups of respiratory diseases with convolution neural networks (CNN) while finding 

the optimal parameters for input using CT and PFT values obtained from a single health screening 

center. With the CNN-derived 3D features trained and tuned with 9398 and 1343 subjects, 

respectively, our model achieved a concordance correlation coefficient of 0.940 and 0.907 for 

FVC and FEV1 prediction, respectively, and an AUROC of 0.85 for classifying the risky group 

(FEV1/FVC ratio < 70%) using an independent testing dataset of 2720 subjects. Our study has the 

meaning in that we utilized the automatically derived features from whole volume low-dose chest 

CT to predict the measured values of spirometry, obtaining excellent agreement. Also, we 

searched the proper setting for input at the same time. 

In our study, we compared input parameters with only one network architecture, which has the 

limitation of not being able to explore the network design suitable for our purpose.  The dataset 

was gathered from a single site with relatively normal participants, preventing us from obtaining 

accurate characteristics of diseased groups. If a subsequent study with a dataset containing a 

diseased group is conducted with network architecture better suited for this purpose, the clinical 

utility and importance of this study will increase. In any case, the significance of our findings was 

that they revealed the baseline score for predicting spirometry-measured parameters from a 

normal population using a deep learning approach and evaluated the optimal task setup. 
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Abstract (In Korean)  
 

폐암 선별 진단에 있어서 기존의 검진 방법인 흉부 X 선에 비해 저선량 방사선 CT 가 그 

선별능력이 우월함을 입증하다는 내용을 담은 두 번의 대규모 무작위 대조 실험(RCT) 결과가 

보고된 이후, 여러 폐암 관련 단체들은 고위험 군에 저선량 CT 를 이용한 폐암검진 권고안을 

마련하였다. 국내에서도 2 년 간의 시범사업을 거쳐 2019 년부터 국가 암 건진 사업의 대상에 

폐암을 포함하였다. 이로써 54 세-74 세 연령 군 중, 30 갑년 이상의 흡연력을 가진 이는 국가의 

지원을 받아 저선량 CT 를 이용한 폐암 검진을 받을 수 있게 되었다. 많은 나라들이 이에 대응하는 

정책적 노력을 기울이고 있어 향후 저선량 CT 의 시행 횟수가 증가할 것으로 예상되며 이러한 

영상 정보를 이용하여 자동화된 방식으로 진단에 도움을 줄 수 있는 알고리즘의 필요성이 증대될 

것으로 생각된다.   

폐활량계를 이용한 폐기능검사(spirometry)는 COPD 및 여러 호흡기 질환을 진단하고, 중증도를 

판정하는 도구로서 활용되고 있다. CT 에서 여러 정량적 지표를 추출하여 폐활량 지표와의 

상관관계를 분석하고, 해당 지표를 예측하는 연구 결과가 많이 제시되었다.  그러나 기존 연구는 

정량적 지표를 추출하거나 추출된 지표를 이용하여 모델을 수립하는 과정에 인간의 노력과 

시간이 많이 드는 한계가 존재하였다. 합성곱 기반 신경망(Convolutional neural network)을 

이용한 심층 학습 알고리즘(deep learning; 이하 딥러닝)은 학습과정에서 역전파 알고리즘을 

이용하여, 영상의 특성 지표를 추출하고 모델을 구성하는 과정을 자동화하며 기존 알고리즘에 

비해 월등한 성능을 보여 주고 있다. 본 학위논문에서는 이러한 CNN 기반의 딥러닝 알고리즘을 

이용하여 저선량 CT 에서 폐활량 지표 예측 가능성을 탐색하였다.  

서울아산병원에서 건강검진을 받은 피검사자를 대상으로 한 본 연구에서는 폐활량계로 측정한 

노력성 폐활량(forced vital capacity; 이하, FVC)와 1 초간 노력성 폐활량(forced expiratory 

volume in one second; 이하, FEV1)의 측정값을 예측하는 모델을 각각 구성하였다. 이렇게 

예측한 FVC 와 FEV1 은 해당 대상자와 같은 성별, 연령, 키, 몸무게를 지닌 정상군에 대한 

예측값에 대한 비율, FVC 에 대한 FEV1의 비율로 변환되어 임상에서 위험군을 진단할 때 쓰이는 

기준을 적용한 분류 모델을 구축하는 데에 이용되었다. 위험군을 선별하는 기준은 FVC%, FEV1% 

<80 그리고 FEV1/FVC <70%이다. 또한, 측정값과 딥러닝 모델 예측값 사이의 일치도 

평가지표도 계산하여 비교하였다. 학습된 딥러닝 모델은 폐활량 측정값 모두에 좋은 일치도 

성능을 보여 주었으며, FVC 가 FEV1 에 비해 좋은 성능을 보였으나, 기준값에 대해 보정된 

지표들(FVC%, FEV1%)에 대해서는 측정치보다 낮은 성능을 보였다. 또한, 분류 성능에 대해서는 

임상에 쓰일 만한 좋은 성능을 보여 주지는 못했다. FVC, FEV1 각 예측 모델의 결과에 영향을 
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주는 영역을 GradCAM 을 이용해 살펴본 바, FVC 예측 모델은 우측 폐의 앞부분과, 좌측 폐의 

중간 부분을 강조하였으며, FEV1 예측 모델에서는 양측 모델의 중간 부분과, 앞/뒤 영역이 강조된 

결과가 도출되었다.  

결론적으로, 본 학위 논문의 연구과정에서는 CNN 을 기반으로 한 딥러닝 모델을 이용하여 저선량 

CT 영상에서 폐 기능, 그 중 폐활량 지표를 예측하는 모델을 개발하였다. 모델을 개발하는 

과정에서, 연구 결과에 영향을 주는 입력 변수들의 조합에 대해서도 실험하였다. 본 연구의 

결과가 CT 를 이용한 폐 기능 예측 연구를 진행함에 있어 시작점이 될 수 있을 것으로 기대된다. 
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