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 Introduction 

The human immune system is composed of two fundamental mechanisms, the innate immunity and the adaptive 

immunity.1,2 The innate immunity provides defense against invading pathogens within the first few hours after 

contact until the adaptive immune response develops. The adaptive immunity (or acquired immunity) recognizes 

and process antigens. The response is mediated by lymphocytes and their products, which are antibodies in 

secreted form or receptors that recognize the antigens. A cardinal feature of the adaptive immune system is to be 

able to recognize and respond to specific and diverse antigens, to generate secondary immune responses when 

exposed to a previously challenged antigen yet maintaining the non-reactivity to self (self-tolerance). 

Lymphocytes of the B cell lineage are the principal cells of the adaptive immune system. As the primary source 

of antibody production, diversity of the B cells is critical for the immune system to recognize and respond to any 

given number of different antigens. In specific, antibodies secreted from B lymphocytes and consequent activation 

of the complement system are the essential components of the humoral immune system. Secreted forms of 

immunoglobulin are mainly secreted by plasma cells and their consequent binding actions include neutralization, 

opsonization, complement fixation etc. The membrane-bound forms of immunoglobulin act as a receptor for 

antigens on B cell surfaces (B cell receptor, BCR). 

The number of antigens that the diverse repertoire of antibodies can recognize is potentially unlimited. In theory, 

the immune system is capable of producing an antibody response to any non-self-antigen, with the estimated 

diversity of at least 1012 unique antibodies (Figure 1).3,4 There are also estimates on the size of human antibody 

repertoire suggested up to ~1015 and as high as 1018 using different theoretical calculations.5–7 However the B 

lymphocytes, the principal cell of adaptive immunity as the sources of antibody production are outnumbered by 

this vast diversity. The human antibody repertoire outnumbers the estimated number of total mature (CD27-/IgD+) 

B cells in the body (~109) and even the number of total cell in the human body.8,9 The combination of innate 

immune system and the adequacy of antigen recognition made by somewhat limited diversity is apparently 

functional, but the paradox of mismatch between the diversity of the immune repertoire and the physical limitation 

of number of B cells is yet fully understood. The complexity of immune repertoire originates from the 

recombination of different gene segments of the V, D and J segments and understanding of the resulting antibody 

gene structure is crucial for further downstream understanding of the immune system. 



 

Figure 1. Estimated antibody diversity of the adaptive immune system. 

  



The structure of antibody is important for understanding of their function. Since the discovery of molecule 

responsible for recognition of pathogenic molecules by Paul Ehrlich in 1891, its structure, function and 

mechanism of action has been the single most important subject in the field of immunology.10 Antibodies are 

generally circulating proteins, composed of two identical heavy chains and two identical light chains. It is a series 

of homologous chains about 110 amino acids in length, folded in globular shape that constructs the Ig domain. 

Both chains have amino-terminal variable (V) regions which functions for antigen recognition and a carboxy-

terminal constant (C) region that harbor mediative roles for effector functions. Genes encoding a complete 

immunoglobulin chains do not exist within the DNA of most cells and are widely separated in germlines cells and 

most somatic cells, requiring assembly and union of separate gene segments.11 An exception is the B cells in which 

the genes are rearranged to create a mature immunoglobulin gene. Heavy chain from chromosome loci 14q32, 

kappa light chain from 2p12 and lambda light chain from 22q12 are rearranged together, from which various 

number of each gene is combined during rearrangement. The rather imprecise joining of gene segments induces 

different amino acid sequences, leading to different functional proteins. In brief, the rearrangement process begins 

with one of the IGHD genes joining with the IGHJ gene, creating a partially rearranged D-J gene. Additional 

joining of IGHV gene generates a completely rearranged IGHV-D-J gene. Only a completely rearranged 

immunoglobulin gene can produce a mature immunoglobulin protein, whereas immunoglobulin genes found in 

other chromosomal loci called orphons are non-functional. Each VH and VL domain encoded by germline V, D 

and J segments require recombination to form a functional (productive) V gene.2 Therefore, antibodies are 

synthesized only by the B lymphocyte lineages and exist in two different forms, membrane-bound on surface of 

B lymphocytes as antigen receptors and secreted antibodies. In addition to V(D)J rearrangements, random indels 

of the germline nucleotide sequences and importantly, somatic hypermutation occurs. Through the process of 

somatic hypermutation, the diversity of B-cell repertoire is further increased to >1014. Somatic hypermutation 

occurs in activated B cells, and the rate of mutation is about 100-folds higher than normal cells owing to the 

proliferation of B cells.12  

A key region in the immunoglobulin molecule is the hypervariable region composed of 10 amino acid residues. 

There are three protruding loops connecting the adjacent β sheets of the V domain. These residues are in 

complementarity to the three-dimensional shape of the binding antigen, therefore called the ‘complementarity-

determining regions (CDRs)’. The CDRs are numbered in order, among which the CDR3 is the most variable of 

CDRs. While all three CDRs are important in antigen recognition, CDR3 is the target of many repertoire studies 



regarding its highest variability. But is is important to notice the other CDRs (CDR1 and CDR2) of their 

contribution to antigen specificity.13 The antigenic specificity of antibody that distinguishes the small differences 

in chemical structure originates from the structural uniqueness. Structurally related antigen is capable of causing 

a ‘cross-reaction’ but the ability of antibodies to specifically bind to a large number of different antigens defines 

the diversity and the collection of such antibodies defines the adaptive immuune receptor repertoire (AIRR).14 

The definition of AIRR made by the AIRR Community is the collection of BCRs and/or T cell receptors (TCR) 

in a population of lymphocytes.15 As each BCRs and/or TCRs have unique combination of gene segments and 

CDR3 sequences, such sequences are used to define B- and T cell clones. The classic definition of clone is the 

whole nucleotide of sequences of V, D and J segments.16 It can also be defined as the receptors with same V and 

J usage and the amino acid sequences of V(D)J junction sequences.17 A more recent definition comes down to 

heavy-light or α/β or γ/δ pairings, but from a sequence-wise perspective, the widely accepted definition of a clone 

is usually limited to the CDR3 region.18,19 The reason why many studies focus on the CDR3 has been previously 

decribed.20,21 The majority of sequence variation that affects three-dimensional structure occurs in the H3 loop, 

which is the third CDR of the heavy chain. An antibody clonotype is defined as the collection of sequences using 

the identical V and J genes to encode the CDR3 amino acid sequences.22 As such, clonotyping is the process of 

identifying the unique nucleotide sequences of the CDR3, which has been limited by the bulkiness of the 

immunoglobulin sequence diversity.18  

Following the study generating the initial sequences of immunoglobulin gene by Matsuda et al.23 the human 

genome sequencing studies have been limited in delineating the immunoglobulin loci, due to its characteristic 

rearrangements and somatic hypermutations, not to mention the inadequate read-depth to cover the vast diversity 

of the AIRR diversity.24 Application of next-generation sequencing (NGS) and the remarkable advancement in 

high-throughput sequencing (HTS) technology has allowed access to the analysis of immune repertoire and has 

allowed more in-depth understanding the diversity of the variable regions. Before HTS technology, analysis of 

the human antibody repertoire has been limited due to its unparalleled size. The AIRR sequencing (AIRR-seq) 

has become a trending topic in the field of immunoinformatics, which combines both immunology, medicine, 

bioinformatics, mathematics and computer science as an interdisciplinary science.25–27 Immunoinformatics has 

become a rising field of immunology research that comprises T cell therapy, vaccine development, proteomics 

and computer science. The importance of immunoinformatics was proven invaluable for the vaccine development, 

especially during the pandemic of COVID-19.28 Antibody is currently the most prominent class of biotherapeutics 



with the continuously growing importance.29–31  

The comprehensive understanding of the adaptive immune system using AIRR-seq is still limited by several 

factors. There is a variety of workflows for approaching the AIRR, for which efforts to standardize the work flow 

is continuously made.15,32–34 Although access to HTS has been facilitated through lowered cost, source of DNA or 

RNA, process of specimen preparation, library generation, and sequencing runs are variable sources of different 

outcomes. Even more, the post-sequencing processes which include annotation, clonotyping and repertoire 

analysis has to be carefully selected according to the purpose of study, scope of interest and its application.32,35–38 

The latter post-sequencing part of the AIRR-seq heavily relies on the bioinformatics technology and computational 

science, and these fast evolving science has introduced several popular novel tools for AIRR-seq.29,39 First and of 

the foremost importance is a proper reference sequences to provide comparison of analytical data. The 

ImMunoGeneTics (IMGT) information database (http://www.imgt.org) is the largest database of immunoglobulin 

reference sequences, that also provides useful tools for analysis and visualization. IMGT HIGH/V-Quest has been 

developed for HTS repertoire data and IMGT clonotype analysis.40 IgBlast is another popular tool for analysis of 

immunoglobulin sequences developed from the National Institute for Biotechnology Information (NCBI).41 Both 

sequence annotations are optimized for multiple searches for a single immunoglobulin sequence, as does many 

more tools including iHMMune-aligner, JoinSolver, ImmPort, GWASdb etc.29,41–44 Prerequisites of background 

knowledge of medicine and biology and understanding of the clinical need are necessary for the discipline of 

immunoinformatics. Basis of immunoinformatics also relies on understanding of the computational approaches 

and its mathematical algorithms. Validation of novel tools and models generated through immunoinformatics is 

important, and only limited number of studies have been conducted in such scope of analyses.20,45–48  Selection 

and establishment of the AIRR-seq workflow requires a considerable efforts to take into consideration, the 

problems originating from sample source, PCR amplification and sequencing errors and the subsequent repertoire 

analyses.49  

For comparison of the clonotypes identified by sequencing, the human immunoglobulin sequences have been 

defined by a unique numbering, established by the IMGT database. The numbering combines the framework 

region, CDRs, structural data and the hypervariable loop characteristics, through which the IMGT-ontology 

classification uses ‘locus’, ‘group’, ‘subgroup’, ‘gene’ and ‘alleles’ for naming and classification of the 

immunoglobulin genes.50 The definition of a clonotype combines a unique V(D)J rearrangement of the IMGT 

genes and alleles annotated at the nucleotide level, a conserved anchor sequences and finally a unique CDR3 of 

http://www.imgt.org/


the in frame juction. For comparison of repertoires such as the gene usage between samples, annotation of the 

immunoglobulin genes are commonly performed at the gene levels (e.g. IGHV3-23).  

Immune system comprises of the cells, tissues, and various compartments of the body. Lymphocytes develop 

from the primary lymphoid tissue (bone marrow and thymus), and further circulate or migrate to secondary 

lymphoid tissues (spleen, lymph nodes, etc.) It is notable that the antigenic stimulus is concentrated in the 

secondary lymphoid tissues, where antigen is presented to naïve and memory B cells.1,2 Access to the lymphoid 

tissues and the lymphatic systems are invasive (i.e. biopsy) and sometimes inaccessible, therefore B cells 

circulating in peripheral blood is the most favored specimen for analyses of adaptive immune system. The first 

raw materials obtained from circulating B cells are either genomic DNA (gDNA) or messenger RNA (mRNA), 

which serves as the templates for library amplification.51 Choice of the raw material is the first factor to consider 

when conducting AIRR-seq studies. gDNA is available proportionally to the number of cells while mRNA is 

associated to the activation status and the function of cells. gDNA has the advantage of easy access and stability, 

but studies regarding the gene transcription level requires mRNA.48 After determining the source of genetic 

material, the next important step is the method of amplification for library preparation. There are several available 

methods including multiplex PCR, 5’RACE (rapid amplification of cDNA Ends), of which 5’RACE-PCR has 

been preferred for deep sequencing methods used in functional studies. During the sequencing process errors can 

occur and understanding the whole process throughout is required for minimizing such errors. There are several 

sequencing platforms available, among which Illumina sequencing platform has the advantages of shorter read 

length, reduced cost and importantly higher throughput.52 With the increasing demand for immunoglobulin 

repertoire sequencing with clinical purposes of clonality detection and minimal residual disease monitoring, 

commercially available reagent kits have been developed, validated and approved for clinical use.53–57 While 

hematologic malignancies of the B cell lineage such as chronic lymphocytic leukemia, multiple myeloma are first 

line of disease applications, its use and application has potential for widespread use, with higher sensitivity and 

specificity.58 There has been a collaborative effort for the standardization of PCR-based immunoglobulin and TCR 

clonality testing including both pre- and post-analytical aspects of clonality testing, made by the EuroClonality 

(BIOMED-2) consortium.59 Commercially available reagent kits are in accordance with these efforts. 

Lastly, the selection of bioinformatics to analyze the massive data generated by HTS requires consideration. 

There are openly available tools for repertoire analyses, while development of one’s own tool is possible, but 

would require tremendous expertise in the narrow scope of computer science and bioinformatics. In conjunction 



with the efforts to standardize the AIRR data, known as the AIRR data commons, there are several popular 

standard tools.15,34,60 MiXCR/MiTCR is commonly used for profiling of AIRR-seq data, with advantages of faster 

algorithm and ease of use.61 Other popular AIRR-seq data processing tools include VDJPipe and Presto.62,63 These 

tools allow assignment of V(D)J genes and sequence identification of CDR3 and more. Once sequences are 

preprocessed and assigned specific V(D)J gene sequences, the following steps in AIRR-seq analysis is called the 

post-processing or the repertoire analysis step. As mentioned above, a clone originating from the same 

immunoglobulin requires equal V and J sequences and CDR3 lengths. Grouping such sequences into group, i.e., 

clonotyping requires additional bioinformatics tools such as Change-O, VDJtools and more.64–66 Establishing a 

pipeline for AIRR-seq is up to the purpose and scope of the study, starting from the specimen to post-processing 

repertoire analysis, to which a gold standard is yet to be set. 

Organ transplantation is a clinical application of transplant immunology, in which understanding of the 

immunology at play has greatly improved the outcome of graft survival. Transplantation is the preferred treatment  

for chronic kidney disease and development of successful immunosuppressants have been essential in this 

improvement in clinical outcome, especially for kidney transplantation (KT).67 Without proper 

immunosuppression, grafts are at risk of rejections, and the most frequent cause of graft loss remains to be 

antibody-mediated rejection (ABMR). While the survival and outcome of KT has made a leap through the use of 

potent immunosuppressants and improving surgical techniques, the long-term graft survival rate has not much 

improved since 1990’s, according to the US renal data system.68 A recent domestic study on large cohort of KT 

recipients between 2002 and 2017 describes the graft survival rate to be at 90.3% from living donors and 85.6% 

from cadaveric donors.69 Given that graft loss within the first year has been avoided, which also coincides with 

the report of steady decrease in acute rejection, ABMR remains to be the main cause of long term graft loss.70,71 

There is currently a unmet clinical need for discovery of a biomarker that allows early and specific detection of 

ABMR and possibly, provide a potential therapeutic target. Complexity of the mechanism through which ABMR 

occurs have multiple factors involved during its process, which includes but are not limited to, antibody produced 

by B cells, human leukocyte antigen (HLA) mismatch, degree of sensitization, underlying medical conditions etc. 

Among these factors the presence of the donor specific antibody (DSA) is probably the most adverse factor for 

achieving transplantation tolerance.72 However, antibodies of non-HLA nature are also associated with such 

alloimmune responses that leads to ABMR, and the role of B cells and its produced antibodies are increasingly 

highlighted.73,74 Application of AIRR-seq for the field of organ transplantation is becoming more appropriate as 



discoveries are being made that antibody repertoire is closely associated with inflammatory responses, 

alloimmune responses elicited by solid organ transplantation. Such changes in antibody repertoire have been 

associated with graft dysfunction or loss after KT.75–79  

A series of previous studies have demonstrated the difference of immune repertoire correlates with the post-

transplant rejection risk.75 Reduction in diversity of the immune repertoire likely resulted from the immune 

suppression or immunogenic antigens causing expansion of certain persistent clones. Such clonal expansion was 

not only observed in B cells but also in T cells, in which the clonal T cell expansion correlated with the graft 

dysfunction demonstrated by elevated serum creatinine levels.80 The diversity of T cell repertoire was shown to 

be lower in transplanted groups when compared to non-transplant control groups, and also showed distinct 

clonotype distributions.78 A follow-up study demonstrated that such decrease in diversity was also demonstrated 

in B cell repertoire, and such changes were readily detectable by NGS as soon as day 1 after transplantation.79 To 

the best of our knowledge, the decrease in diversity of the immune repertoire after transplantation is well 

demonstrated, although the contribution of immunosuppression and individual variation needs to be considered. 

Many of the previous literature have focused on T cell repertoire using T cells, and only limited number of 

studies using B cells have been conducted. To understand the sequence related properties of the antibody and 

measure the diversity of B cell repertoire in correspondence to the clinical outcome, AIRR-seq is applied to a 

cohort of KT recipients in this study. With the goal of characterizing the antibody repertoire among different 

clinical outcome and phenotypes, we have evaluated a composite pipeline of AIRR-seq which provides more 

accessibility and ease of use. The results of AIRR-seq can be analyzed in measures of clonality, diversity and gene 

usages. The aim of the study is to provide clinical implications of AIRR-seq for detection of ABMR and provide 

the possibility of AIRR-seq as a universal laboratory test, which can provide diagnosis, response to drug 

(immunosuppressants) and monitoring of clinically relevant conditions. 

This study also aims to compare a variety of available AIRR-compliant tools, in the context that each tool is 

somewhat limited in certain aspects, e.g., number of sequences able to handle, incompleteness of suite of tools to 

complete the whole process of AIRR-seq, and metadata handing capabilities, etc. Table 1 provides a summary of 

commonly used AIRR-seq tools and their functions. Yet only a few software packages are AIRR-compliant but as 

more are becoming compliant, the AIRR format will be utilized more in terms of standardization and 

reproducibility. As AIRR studies vary from another in various ways, comparison of popular tools which have been 

only compared in a broader scope is informative.81,82
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Table 1. Comparison of commonly used preprocessing AIRR-seq tools 

*pRESTO is provided in VDJServer but was not utilized in this study due to its limitations such as requirement for primer sequences. 

**Undisclosed company confidential information. 



    Materials and Methods 

1. Study design and population 

A cohort of KT recipients who under received transplantation between December 1996 and March 2021 was 

used for selection of samples used in this study. Kidney biopsy was performed for these patients during the period 

of January 2018 and July 2021, indicated as either protocol biopsies or in suspicion of rejection. Samples of 15 

recipients were carefully selected, based on availability of kidney biopsy data, matching blood samples including 

serum, buffy coat and/or PBMC. The patients were comprehensively evaluated of their transplant status and the 

clinical condition of the graft. Kidney biopsy specimens were reviewed by board-certified pathologists applying 

the semi-quantitative histological scores from the Banff 2019 classification.83 Additional criteria of C4d positivity 

to determine the possibility of presence of ABMR (Table 2.) was implemented in this study, because in many 

clinical situations were mixed-phenotype rejections present. A histologic diagnosis of T cell mediated rejection 

(TCMR) was used as an exclusion criterion for either of study groups. Also, patient samples without apparent 

evidence of ABMR were categorized as ‘No rejection (NR)’. The possibility of subclinical injury and presence of 

anti-HLA antibody without the manifestation of C4d positivity is present in NR groups. However, these limited 

number of NR group patients were strictly selected with the category (Table 1). All specimens were collected with 

provided informed consent to the participants. The study was conducted in adherence to the Declaration of 

Helsinki. 

  



 ABMR (N = 11) No rejection (N = 4) 

Biopsy diagnosis Antibody-mediated rejection No evidence of rejection 

Non-specific changes 

 Suspicious for ABMR with additional 

diagnosis of Borderline T cell-mediated 

rejection 

 

   

Exclusion Criteria Absence of donor specific antibody 

Absence of C4d deposition (c = 0) 

Presence of any class II HLA antibody 

>10,000 (MFI)  

 Acute TCMR and/or chronic active 

TCMR 

Any of borderline TCMR, chronic active 

TCMR and ABMR 

   

Table 2. Classification criteria for sample groups 

  



2. Specimen processing and DNA extraction 

Purified genomic DNA was extracted from deep freezer (-70℃) stored buffy coat specimens using the QIAamp 

DNA Mini kit (Qiagen, Valencia, CA, USA) and the QIAcube instrument (Qiagen). With the minimum input 

quantity of 50 ng high-quality DNA, DNA concentrations were measured by fluorimetry method after extraction 

and purification using the Qubit dsDNA HS assay kit (Life Technologies, Carlsbad, CA, USA). 

3. Library amplification and purification 

LymphoTrack IGH FR1 assay kit - Miseq (Invivoscribe, Inc. San Diego, CA, USA) was used according to the 

manufacturer’s instructions. Amplification PCR was performed using 2 ug of gDNA as input, independently 

barcoded and using EagleTaq DNA polymerase (Roche). PCR purification was done using the Agencourt AMPure 

XP Bead (Beckman Coulter). Master mix containing gDNA, reagents and DNA polymerase and Illumina linkers 

to the amplicons were Qiagen Multiplex PCR kit (Qiagen). 

The PCR reaction mixture was prepared in 55.3 uL in total with the following: total 8 uL of sample DNA and 

nuclease free water, 2 uL of LymphoQuant internal control (LQIC) DNA, 45 uL of master mix, 0.3 uL of DNA 

polymerase. PCR program setting in brief, was as follows; 95℃ for 7 minutes (1 cycle), 95℃ for 45 seconds, 60℃ 

for 45 seconds and 72℃ for 90 seconds (29 cycles), 72℃ for 10 minutes (1 cycle) and 4℃ cooling cycle to finish. 

For PCR product purification, the final PCR product was mixed with AMPure XP reagent in 1:1 ratio with 

nuclease free water as elution solution. Average fragment length of IGH is about 450 bp, which the length (base 

pairs) and concentration (ng/uL) and the molarity (nmol/L) were measured after elution.  The final library is 

prepared with dilution with 30% PhiX. Total volume of 700 uL consisted of 343 uL of 20pM library, 147 uL of 

20pM PhiX, 210 uL of HT1 buffer. 

  



 

Figure 2. Workflow of AIRR-seq using LymphoTrack IGH FR1 assay kit - MiSeq 

  



4. NGS and data analysis 

Libraries were sequenced with with MiSeq Reagent v2 kit (Illumina, San Diego, CA, USA) on a MiSeqDx 

instrument (Illumina). The generated FASTQ files were stored for further analyses, while LymphoTrack-MiSeq 

version 2.4.3 (Invivoscribe, Inc.) according to the user manual provided by the manufacturer. NGS library was 

constructed with the quality control criteria of the following: 1) cluster density: 800-1200 k/mm2, 2) cluster 

passing filter: >80% and 3) Q30 >30%. 

5. AIRR-seq analysis pipeline 

The AIRR-seq pipeline following the NGS experiment is described in Figure 2. To overcome the limit of only 

including small number of samples in NR group, we utilized the NCBI Sequence Reads Archive (SRA) data for 

recruiting normal healthy control data (https://www.ncbi.nlm.nih.gov/sra). Using the sequence reads and the 

obtained raw reads in FASTQ format, the downstream analysis was done. Sequences from SRA were publicly 

available under the BioProject number PRJNA406949.  

The workflow of AIRR-seq can be categorized into three major steps: 1) preprocessing, 2) annotation - V(D)J 

assignment and CDR3 identification, and 3) clonotyping and repertoire analyses (Figure 3). Preprocessing process 

includes the quality control of the obtained sequences using dedicated tools, such as FAST QC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and MultiQC.84 As Illumina platform generates 

paired-end sequences, both reads R1and R2 were checked for sequence quality scores and sequence length 

distributions using MultiQC. After passing quality QC, the sequences require merging of R1 and R2, for which 

MiXCR, LymphoTrack-MiSeq software and VDJPipe were independently used as comparison.61,62 Figure 4 is a 

summary flow chart of the AIRR-seq pipelines used in this study.  

Merged sequences from paired-end sequencing are passed on for annotation, V(D)J assignment and CDR3 

identification, for which the IMGT database was used as a reference sequence.85 The details of method as to how 

each pipeline performs such annotation differs from each other, for example the MiXCR tool utilizes an 

independent algorithm, the kAligner2 algorithm, whereas the VDJPipe tool uses the Hamming distance algorithm. 

When using the IMGT/HighV-QUEST tool, the Smith-Waterman algorithm is implemented, and the classical 

BLAST algorithm is used in IgBlast tool. An important distinction between the annotation tools is the ability to 

perform clonotyping, in which the sequences are grouped and categorized according to their identified CDR3 

https://www.ncbi.nlm.nih.gov/sra
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)


sequences and V(D)J gene, allele and families. After assignment and CDR3 identification is finished, as 

clonotyping, the repertoire analysis is performed using the following tools: Immunarch and VDJServer (Figure 

5.).86,87 Cloud- or web-based services such as VDJServer (https://vdjserver.org/) was used with ethernet access 

and other stand-alone tools were installed and utilized from a local workstation, of which the detailed specification 

of the workstation used in this study is described in Table 3. The repertoire analysis included clonality, diversity, 

CDR3 analysis, V(D)J gene usage and somatic hypermutation profiles, which were commonly included in the 

Immunarch package and VDJServer.  

The repertoire analysis consisted of 4 major categories. These were, 1) basic statistics and clonality, 2) diversity, 

3) CDR3 analysis, and 4) V(D)J usage. The basic statistics include number of clones, distribution of lengths and 

counts. The clonality analysis is also included with the basic statistics analysis. The diversity estimation includes 

number of different approaches, which includes Chao1, Hill numbers, the Gini-Simpson index and the rarefraction 

analysis. CDR3 analysis mainly compares sample data using distribution of CDR3 lengths, in either nucleotide 

level or amino acid level. The gene usage analysis compares the gene segment data of each sample, of which the 

segment data are annotated using the IMGT nomenclature. The gene segments included in this study were all of 

IGH origin, and the gene usage analysis is limited to the IGHV and IGHJ genes. For uniformity of the analysis, 

the Immunarch R package was used for visualization of repertoire analyses.  

6. Reproducibility and read-depth associated changes in clonotypes 

 To address the controversial topic of adequate reads required to properly assess the adaptive immune repertoire, 

we tested limited number samples in duplicates, utilized repository data which includes repeated NGS data of the 

same individuals for assay reproducibility. For reproducibility, sample data from the SRA accession number 

PRJNA349143 (influenza vaccination response study). The samples were collected from the same donors at equal 

time intervals, before 8 days, before 2days, and before 1 hour, before vaccinations were given to subjects. The 

subject IDs were FV, GMC and IB with serial numbers given in timely order (e.g., before 8 days - FV1, before 2 

days – FV2 and before 1hour FV3).  

 The number of reads were compared to the final clonotype numbers, to assess the relationship between reads and 

clonotypes. The raw read depth of course does not take into consideration the efficiency of alignment process, but 

comparison of raw reads and the final clonotype output can provide a simple comparison when identical 

preprocessing pipeline is applied.   

https://vdjserver.org/


 

Figure 3. A concise overview of the workflow of AIRR-seq 

  



Processor Intel i7-7820HQ (2.9 GHz) 8MB Cache 

Memory 32GB 2400MHz DDR4 

Storage 512GB PCIe M.2 SSD (32Gb/s) and 2TB HDD 

Graphic NVIDIA Quadro M2200, 4GB 

Operating system Windows 10 Pro (64 bit) 

Table 3. Specifications of the local workstation used for AIRR-seq. 

  



  

Figure 4. Study Flowchart summarizing the pipeline of AIRR-seq and its comparison 



 

Figure 5. VDJServer displaying functions of preprocessing, V(D)J assignment and repertoire analysis 

 



 

Figure 6. Comparison of preprocessing pipelines and example data throughout the pipeline 



7. Statistical analysis 

All data processing and analyses were done using Excel (Microsoft Corporation, Redmond, WA, USA) and the 

installed R packages using RStudio v.1.4.1717 (RStudio Inc., Boston, MA, USA). Installed dependencies not 

specified as an independent tool includes the following: ggplot2 3.1.0, dplyr 0.8.0,  dtplyr 1.0.0, data.table 1.12.6, 

patachwork, factoextra 1.0.4, fpc, UpSetR 1.4.0, pheatmap 1.0.12, ggrepel 0.8.0, reshape2 1.4.2, circlize, MASS 

7.3, Rtsne 0.15, readxl 1.3.1, shiny 1.4.0, shinythemes, airr, ggseqlogo, ggalluvial 0.10.0, Rcpp 1.0, magrittr, 

methods, scales, ggpubr 0.2, rlang 0.4, plyr, dbplyr 1.4.0, jsonlite, readr, stringr, tibble, tidyselect, purr, and the 

versions specified here indicate the minimum requirements. Packages installed with the R commandline 

‘install.packages()’ was the Immunarch R package. While most statistical analysis and visualization of data were 

done by ggplot package included in R, results visualized in this study are outputs directly from Immunarch and 

VDJServer as sources. The difference between groups was calculated by the Wilcoxon rank sum test, when only 

two groups were used for comparison. If there are more than two groups, i.e. ABMR, NR and the normal control 

data, the Kruskal-Wallis test was performed. The P-value shown above the plots are adjusted by the Holm-

Bonferroni correction. All statistical analysis were done using the functions wilcox.test, kruskal.test, and p.adjust 

implemented within the R package. 

  



 Results 

1. Demographics 

The summary of the comparison of clinical and laboratory data between the groups are shown in Table 4. It is 

notable that ABMR group included six female individuals, while no females were included in the NR group. The 

age was shown to be higher in ABMR group, and the ABMR group exhibited longer elapsed time after 

transplantation (2,421.5 vs 388 days). The presence of anti-HLA antibody was also distinctive between the groups, 

in which ABMR group showed higher peak antibody MFI compared to NR group (20,353 vs 6,299). Of note, the 

MFI for ABMR group indicated the DSA MFIs whereas the MFI in NR group indicated any anti-HLA antibody.  

2. Sequencing statistics – preprocessing and replicates 

The data of individual samples and the sequencing statistics summary of the preprocessing pipelines are shown 

in Table 5. The summary statistics of the three preprocessing tools used in this study are shown as each steps of 

preprocessing is done, from left to right. For each preprocessing tools, the same paired-end raw sequence files 

(R1 and R2) were used as inputs. The data obtained from the SRA were processed by MiXCR tool, and the 

summary statistics and the results are shown in Table 6. The summary of normal controls used for reproducibility 

and read-depth associated clonotype analysis are provided in Supplemental Table 1. 

From the comparison of preprocessing workflows, the differing preprocessing steps between tools did not allow 

a direct sequence number to sequence number comparison, as the naming of each step differed between tools. For 

example, the overlapping and aligning of the MiXCR tool corresponds to the merging process of VDJPipe and 

combining process of LymphoTrack. However, the final number of reads used for clonotyping provides an idea 

of the quantitative changes made to the input data. The MiXCR preprocessing provides the number of final 

clonotypes, whereas the other preprocessing requires immunarch analysis to discover the corresponding data. Due 

to differences in aligning algorithms and clonotyping methods, the number of reads differed between pipelines. 

Comparing the ratio of reads used for clonotyping to total input reads, the MiXCR showed that 80.3% of total 

input reads were used. The ratio was 62.8% in VDJPipe (using IgBLAST) and 82.2% in LymphoTrack software, 

in which input read count into IgBLAST and total input read into LymphoTrack MiSeq-Software are summarized 

in Table 5, respectively. 

  



Table 4. Demographic summary of the clinical and laboratory data between groups 

 

 

 ABMR NR 

M/F ratio 5:6 4:0 

Age 56.3 (46 ~ 66) 41.3 (29~56) 

Time since tpl 
2421.5 days (72~6985 

days) 
388 days (99~893 days) 

Mean peak antibody 

(MFI) 
20353 6299 

   



Sample 

Sex/ 

Age 

Total 

reads 

MiXCR VDJPipe LymphoTrack 

Overlapped 

and aligned 

Read used 

as core 

Read used in 

clonotyping 

Final 

clones 

Merged 

reads 

Filtered 

reads 

Unique 

reads 

IgBlast RepCalc 

Total input 

read count 

Combined 

unique reads 

R11 M/50 735,286 577358 541879 535492 5575 735270 694884 574200 400727 400727 555497 102941 

R13 M/61 915,486 822270 797536 786932 30099 915482 884018 710218 538904 538904 713689 135331 

R25 M/66 932,712 718134 657985 640228 3484 932472 871824 564185 363884 363884 700180 112110 

R35 M/57 685,787 543589 526558 518830 19649 685759 654549 594821 429978 429978 541924 127323 

R43 F/62 710,829 583419 568244 557996 32251 710789 682788 643421 477824 477824 581303 148919 

R63 F/52 750,685 634505 612597 608308 26270 750669 709412 665292 527810 527810 634390 149423 

R64 M/46 673,420 534000 521305 518530 5224 673384 624895 518244 393215 393215 551393 108892 

R75 F/50 762,975 633478 622773 620710 5344 762936 707445 556033 435379 435379 648872 114425 

R80 F/62 682,240 584849 556548 561296 13305 682204 633098 545387 447684 447684 589206 94779 

R81 F/52 755,683 665130 647235 644278 21842 755448 713918 662988 552458 552458 678641 138193 

R91 F/63 685,787 623356 600118 595551 16768 730928 683243 619921 491795 491795 629072 144718 

N30 M/48 766,337 642646 612909 613623 11794 766315 708609 632250 507982 507982 654390 146538 

N84 M/32 770,217 671012 610301 604221 37838 770140 743412 611483 455921 455921 533168 131221 

N88 M/29 794,116 655729 632228 633306 40554 794054 747419 707260 553303 553303 661619 157349 

N96 M/56 834,502 721537 695160 690835 26670 834215 790614 727846 577283 577283 726012 151778 

Table 5. Demographic information of the subjects, the sequencing statistics and preprocessing summary 



Sample Total reads 
Total number of unique clonotypes 

MiXCR VDJPipe LymphoTrack 

R11 735,286 4028 400727 11632 

R13 915,486 10521 538904 28768 

R25 932,712 2887 363884 8822 

R35 685,787 16133 429978 35754 

R43 710,829 26264 477824 44920 

R63 750,685 22438 527810 45812 

R64 673,420 4371 393215 15255 

R75 762,975 4343 435379 15160 

R80 682,240 11574 447684 29781 

R81 755,683 18113 552458 40945 

R91 685,787 13631 491795 35774 

N30 766,337 9882 507982 35149 

N84 770,217 27258 455921 42925 

N88 794,116 34206 553303 54922 

N96 834,502 21828 577283 44804 

Table 6. The number of unique clonotypes analyzed by Immunarch, using input data from three preprocessing pipelines



3. Basic repertoire statistics and clonality 

 The AIRR analysis begins with basic repertoire statistics analyses such as number of clones and distribution of 

lengths and counts. The clonality was analyzed using the repExplore function from the Immunarch R package 

Table 6 summarizes the total number of unique clonotypes inferred by each preprocessing tools. Figure 7 is the 

summary of basic repertoire statistics and the comparison of three different preprocessing tools. The results from 

individual samples are shown, the total number of clones and the number of clonotypes. Along with the process 

of clonotyping, the number of clones decrease into clonotypes, as sequences of the same progeny are grouped 

together. This was true for MiXCR and LymphoTrack preprocessed data, while the VDJPipe preprocessed data 

retained the number of clones (Figure 7, b).  

The difference in clonality between ABMR and NR groups were investigated (Figure 8). The data from three 

preprocessing tools, showed similar distribution of clone numbers and clonotypes, and also similar differences 

between groups. Although statistical significance was not found in any of the three analyses, a tendency of higher 

clone number and higher number of clonotypes was consistently observed. It was the initial assumption that there 

would be a difference of clonality between the groups. However, a statistical significance was absent, and we 

applied a cutoff of 5,000 clonotypes, re-categorizing the samples into disease category (D) and no rejection 

category (N). Samples A11, A25, A64 and A75 were classified as D and the other ABMR samples and NR samples 

were classified as N. The Figure 9 shows that a cutoff of 5,000 clonotypes was statistically significant classifier 

yet maintaining all NR group samples in the N category (P value = 0.002).  

The samples showed difference in clonotype results according to different preprocessing, for instance, N30 

sample showed particularly lower number of total clones and clonotypes using the MiXCR preprocessing (11,794), 

compared to the LymphoTrack preprocessing. The difference between preprocessing tools was anticipated, but 

the results from VDJPipe showed that additional process of clonotyping was required to properly address the 

repertoire. However, the number of clonotypes shown from MiXCR and LymphoTrack were similar, suggesting 

that a degree of agreement is present. 

  



a) MiXCR preprocessing 

 

b) VDJPipe preprocessing 

 

c) LymphoTrack preprocessing 

 

Figure 7. The number of clones and clonotypes analyzed by Immunarch using different preprocessing tools. 

The number of clones (left) and the number of unique clonotypes (right) are shown.  



a) MiXCR preprocessing 

 

b) VDJPipe preprocessing 

 

c) LymphoTrack preprocessing 

 

Figure 8. Group comparison of number of clones and number of clonotypes 

The number of clones (left) and the number of unique clonotypes (right) are shown.  



 

Figure 9. Comparison of clones and clonotypes using the 5,000 clonotype cutoff for reclassification 

  



 The clonality analysis also included the estimation and comparison of differences in abundances of clonotypes 

between samples. This was compared in two methods, 1) proportion of the most abundant clonotypes and 2) 

proportion of the least abundant clonotypes. Figure 10. shows the clonality analysis results of the three 

preprocessing tools.  Lack of assigning clonotype information in VDJPipe resulted in skewed clonotype analysis 

results, whereas MiXCR and LymphoTrack were similar in their analyses of top clonal proportions. When 

assessing the top clonal proportions, ABMR group had higher proportions of upper clonotype indices, suggesting 

the proliferation of high frequency clonotypes. However, the analyses of rare clonal proportions were dissimilar 

between all three tools, but the rare fraction (1e-05) in the rare clonal proportion analysis were always higher in 

the ABMR group.  

The repertoire overlap was analyzed to provide the similarities between repertoires of the samples. The ‘public’ 

clonotypes were defined as the clonotypes shared between given repertoires, of which their overlap values were 

visualized into a box plot. We also included the Morisita’s overlap index, which measures the dispersion of 

individuals in the group. There were also other Jaccard, Tversky and cosine indices for calculation of repertoire 

overlap, but the characteristics of the sample data did not require application of these asymmetric and non-zero 

vector measures. Figure 11 depicts the overlap of repertoire between samples, of note A25 and N84 showed 

noticeable overlap of public clonotypes, with overlap value of 1163, 1537 and 1382, respectively. A11 and N88 

also showed high overlap values (447, 632 and 528) When Morisita’s overlap index of dispersion was applied, 

the ABMR samples had overlapping results, whereas the NR group samples were mostly independent from all 

other samples, displaying overlap values of below <0.2, and mostly below <0.1. 

 



a) MiXCR 

 

b) VDJPipe 

 

c) LymphoTrack 

 

Figure 10. Clonality analyses of the most abundant and the least abundant clonotypes 



1) MiXCR 

 

2) VDJPipe 

 

3) LymphoTrack 

 

Figure 11. Repertoire overlap analysis of public clonotypes and the Morisita's overlap index 



4. Diversity estimation 

 The diversity estimation of the repertoire was done using the Chao1, Hill number, True Diversity, the Gini-

Simpson and d50 indices. The Hill number, one of the most popularly used diversity index, is shown in Figure 12. 

The numbers of individual samples are shown in left, and the comparison of sample groups are shown in right. 

The diversity of NR group was higher than the ABMR groups, in all three preprocessing input data, and this was 

consistent with the other measures of diversity. The non-parametric estimator of species richness (i.e., the number 

of clonotypes), Chao1 is shown in Figure 13. The higher Chao1 is too, is indicative of the higher diversity, and 

the higher Chao1 in NR group compared to ABMR group was observed.  

 The True diversity, which refers to the number of equally abundant types to reach the average proportional 

abundance of the types in the dataset, is displayed in Figure 14. The values were consistent across three 

preprocessing data, and the result of group comparison showed higher diversity in NR groups. The inverse 

Simpson index which is the effective number of types from weighted arithmetic mean quantifying the proportional 

abundance of the dataset, is displayed in Figure 15. Lastly, the D50 index, which is calculated by the minimum 

number of different clonotypes to constitute 50% of the total reads, is shown in Figure 16. In summary of the 

diversity estimation of the repertoire, the trend observed in all indices used were equal. The D50 index showed 

the lowest P value for group comparison (0.06), but a statistical significance was not found in any of the indices. 

Regarding individual samples, the A25 sample showed the lowest diversity using any indices, while N88 appeared 

to be of the most diverse among the samples. But there were also results from Chao1 and True diversity indicating 

that A43 was also highly diverse (Figure 13 and 14). 

  



a) MiXCR preprocessing 

 

b) VDJPipe preprocessing 

 

c) LymphoTrack preprocessing 

 

Figure 12. Repertoire diversity estimation - Hill number 

  



a) MiXCR preprocessing 

 

b) VDJPipe preprocessing 

 

c) LymphoTrack preprocessing 

 

Figure 13. Repertoire diversity estimation - Chao1  



a) MiXCR 

 

 

b) VDJPipe 

 

 

c) LymphoTrack 

 

 

Figure 14. Repertoire diversity estimation - True Diversity (Effective number of types) 



a) MiXCR 

 

 

b) VDJPipe 

 

 

c) LymphoTrack 

 

 

Figure 15. Repertoire diversity estimation - Inverse Simpson index  



a) MiXCR 

 

 

b) VDJPipe 

\ 

c) LymphoTrack 

 

 

Figure 16. Repertoire diversity estimation - D50 (minimum number of clonotypes for 50%) 

  



5. CDR3 analysis 

 The distribution of CDR3 sequence length was analyzed, using the nucleotide sequences. The plotting of values 

from each sample results in overplotting within the graph, therefore the group comparison is displayed in Figure 

17. Of note, only the coding sequences were analyzed, and the information regarding the coding sequence is 

imported from the AIRR data format column, ‘productive’.  

6. V(D)J gene usage analysis 

 The target gene and the species used for V(D)J gene usage was Homo Sapiens (hs), IGHV and IGHJ genes. The 

nomenclature of the genes followed the IMGT nomenclature.50 The distribution of IGHV genes was calculated 

after being normalized by the individual clonotype counts to avoid sampling bias between samples. By 

characterizing the samples by usage of specific gene segments and family, a specific gene segment characteristic 

of sample group was investigated. The results of gene usages for IGHV genes and IGHJ genes are shown in 

Figures 18 and 19, respectively.  

The IGHV gene usage analysis showed interesting results, showing the most common utilization of the IGHV3-

23 gene. Despite the absence of statistical significance, IGHV3-23 was the only IGHV gene with noticeably higher 

representation in the R group, whereas IGHV3-11, IGHV3-7 and IGHV4-39 were slightly higher in NR group 

(Figure 18). The individual gene usage analysis results are shown in detail in Supplementary Table 3. From the 

IGHJ gene usage analysis, the IGHJ-6 showed higher gene usage in ABMR group of samples, but without 

statistical significance.  

 The gene usage was further analyzed by calculating the Jensen-Shannon divergence and the gene usage 

correlation (Figure 20). These values were calculated as a preprocessing method, and the following analysis of 

hierarchical clustering displays the structural relationship between the samples (Figure 21). In the case of gene 

usage, the clustered samples were different between preprocessing data. The MiXCR was the only preprocessing 

that grouped only ABMR samples by clustering, whereas the other two preprocessing resulted in mixed 

hierarchical clustering of ABMR and NR group samples (Figure 21). 

  



a) MiXCR preprocessing 

 

b) VDJPipe preprocessing 

 

c) LymphoTrack preprocessing 

 

Figure 17. Distribution of CDR3 nucleotide lengths 

  



a) MiXCR preprocessing 

 

b) VDJPipe preprocessing 

 

c) LymphoTrack preprocessing 

 

Figure 18. Gene usage analysis - V segment statistics 



a) MiXCR preprocessing 

 

b) VDJPipe preprocessing 

 

c) LymphoTrack preprocessing 

 

Figure 19. Gene usage analysis - J segment statistics 



a) MiXCR preprocessing 

 

b) VDJPipe preprocessing 

 

c) LymphoTrack preprocessing 

 

Figure 20. Gene usage analysis - JS divergence and usage correlation  



a) MiXCR preprocessing 

 

b) VDJPipe preprocessing 

 

c) LymphoTrack preprocessing 

 

Figure 21. Gene usage analysis - hierarchical clustering 



7. The reproducibility of repertoire analysis using SRA repository data 

 The summary of SRA repository data used to assess the reproducibility changes in repertoire according to the 

read depth, is displayed in Table 7. The MiXCR preprocessing pipeline was used to process SRA repository data, 

which were paired-end Illumina sequences.  

The result of Immunarch analysis is displayed in Figure 22. The total reads and clones from three subjects at 

their separate samples were variable, while the final number of clonotypes were consistent. And the most 

representative normal control data, using the largest size of IGH sequence publicly available, showed that the 

average clonotype number was around 100,000, using total input read of 218,356,368. The highest clonotype 

number of NR group preprocessed with MiXCR was around 40,554 using total input read of 794,116 (N88). It is 

anticipated that with higher number of input-read, the higher number of the final clonotypes can be obtained, 

assuming the normality of the sample.  



Sample description Total reads 

MiXCR 

Overlapped 

and aligned 

Read used as core 

Read used in 

clonotyping 

Final clones 

FV1 FV_before_8d 1,248,337 1,085,329 775,570 849,097 46,350 

FV2 FV_before_2d 1,057,574 892,113 637,682 695,149 43,737 

FV3 FV_before_1h 1,243,523 1058,109 775,787 846,275 50,957 

GMC1 GMC_before_8d 1,472,513 1,240,963 891,133 978,631 46,035 

GMC2 GMC_before_2d 1,774,057 1,426,720 1,051,114 1,150,558 42,712 

GMC3 GMC_before_1h 1,417,170 1,123,734 798,578 878,807 50,554 

IB1 IB_before_8d 1,456,496 1,205,880 858,687 940,964 91,915 

IB2 IB_before_2d 1,293,820 1,093,866 783,533 857,655 78,258 

IB3 IB_before_1h 1,501,664 1,274,653 927,517 1,015,930 72,627 

Table 7. Description of normal control samples with replicate results and the sequencing statistics and preprocessing summary



a) Reproducibility 

 

b) Clonotype 

  

c) Diversity 

 

Figure 22. Reproducibility, read-depth associated repertoire and the diversity using SRA sequence data 

  



 Discussion 

 As the number of researches in the field of AIRR is currently imploding in number and topics, as the number 

of publication with the query ‘repertoire sequencing’ is continously rising (Figure 7). Molecular genetics has 

changed the paradigm of how we understand biological phenomenons, and AIRR-seq provides a valuable insight 

in to clinical conditions where the adaptive immune system plays an important role. The goal of this study was to 

provide a concise but comprehensive understanding of the currently available AIRR-seq tools, with easier access 

and completeness, starting from the sequencing raw reads to the repertoire analysis.  

Sample selection and the relevant disease categories are important. Here we attempted to explore the key 

difference of AIRR between those demonstrating ABMR and its non-rejection counterpart. Considering the 

uncertain clinical significance of borderline TCMR, specimens with the diagnosis of ABMR that accompanied 

borderline TCMR were categorized as ABMR, in this study. As the clinical course of such cases were more likely 

to follow the course of classical ABMR, which can be characterized by suboptimal renal function recovery, 

occurrence of microvascular inflammation, C4d immunopositivity and development of de novo DSA compared 

to non-borderline TCMR cases.88 The borderline TCMR category has been continuously assessed by the Banff 

schema, and in our cases, the borderline TCMR diagnosis implied ambiguous finding due to minor or absent 

interstitial infiltration (i1 and i0) 89, whereas the diagnosis of ‘suspicious for acute TCMR’ was given otherwise. 

Focal segmental glomerulosclerosis (FSGS) is also a common finding from the biopsy specimen of ESRD 

patients. Despite being a major cause of ESRD, when observed in post-transplant settings, FSGS is considered of 

lesser clinical significance.90,91 According to a report, the incidence of FSGS after transplantation reaches up to 

30%, either as recurrence of primary FSGS or a post-transplant finding. The current immunosuppression regimen 

consisting of rituximab, therapeutic plasma exchange and steroids are capable of managing clinical presentations 

of FSGS, and such findings observed in either of ABMR or NR groups were rather neglected in this study.92,93 

Without a larger, prospective study on management of the post-transplant FSGS, the significance of FSGS in 

posttransplant graft remains unknown. Despite the sample selection with scrutinizing criteria, the AIRR analyses 

results were unable to demonstrate statistically significant differences between the groups. The limitation of this 

study, including the small number of samples (especially the NR group) requires further verification using larger 

number of samples that distinctively demonstrates disease phenotypes.  

  



 

Figure 23. Increasing number of AIRR-seq publications 

  



 An important factor to consider in sequencing-based immunoglobulin studies, is the reproducibility of the AIRR 

testing results. Standardization of such PCR-based immunoglobulin including both TCR and IG (heavy and light 

chains) have been made by the EuroClonality (BIOMED-2) consortium, in scope of providing the reproducibility 

and inter-exchangeability of the studies.59,94 The LymphoTrack IGH assay kit used in this study was developed in 

parallel with the BIOMED-2 protocol, that ensures reproducible pre- and post-analytical results. Another is the 

error rate, of which a more stringent criteria is required considering the astronomical diversity of AIRR. The 

Illumina platform used in this study offers the lowest error rate within the industry of 1.2%.95,96 The choice of 

NGS platform was made.  

 The input DNA volume was determined with several assumptions. The LymphoTrack assay when used for MRD 

monitoring provides a range of sensitivity between 0.01% to 0.0001% (10-4). The interpretation criteria of 

LymphoTrack uses a 5% cutoff for MRD to determine presence of clonality for samples with total read between 

10,000 and 20,000. For samples with reads over 20,000, 2.5% of total merged sequence indicates presence of 

clonality. Determination of clonality can vary among studies, but in general the clonality is usually non-evaluable 

for reads below 10,000 and requires duplicates for reads between 10,000 ~ 20,000.97 Therefore we calculated with 

the following assumptions to achieve a more sensitive analysis of clonality. The recommended read depth for 

clonality is between 20,000~50,000, and >100,000 preferably. 

The human diploid cells including lymphocytes contains about 6.5 pg (4-7) per each cells.98–100 Under the 

assumption that all DNA is sequenced, an input DNA of 1 ug is equivalent to about 150,000 (153,846) cells, which 

includes about 4,500 B cells (Lymphocytes account for average of 30% of the white blood cells (WBC) when the 

differential count is normal). The number of B cells equivalent to 2 ug of input DNA is therefore approximately 

10,000 B cells. This number is still only a fraction to the total estimated number of B cells per human which is at 

about 1010~1011 cells.4 Although previous studies have used much less amount of input DNA ranging from 25 ng 

to 500 ng, studies differ by the types of input (DNA or RNA) and the depth of reads.101,102  

Input DNA volume was set with the goal of avoiding NGS mistakes that often produce misleading repertoire 

results. Oversampling, use of Unique Molecular Identifier (UMI) and computational filtering for error correction 

are methods that can be used to avoid NGS mistakes, and we approached with the oversampling method in this 

study. The general rule of 5 – 10 times more reads than the number of input cells is an agreeable measure of 

calculation (adapted from AIRR-community webinar of April 6, 2021).  



The CDR3 length analysis are usually done by either nucleotide length or the amino acid lengths. The initial 

analysis was done using the amino acid parameter, where no noticeable difference between sample groups was 

found (data not shown). As some previous literature suggested that use of amino acid based Hamming distance 

had significantly lower sensitivity, the analysis was conducted using nucleotide lengths.103,104 Unfortunately this 

analysis also failed to demonstrate noticeable differences between groups. The definition of clonotype can differ 

between studies, as 100% identical CDR3 sequence was suggested by Briney et al., whereas lower 80% sequence 

identity was used to cluster clonotypes in another study.5,105 The amount of N nucleotides in the V- or J- segment 

could have affected the otherwise same clonotypes into different clonotypes, leading to a more diverse and 

indifferent results shown in this study.106 Investigation by separate clonotyping tools that utilize different 

clustering algorithms is required, but the use of such tool e.g. ImmuneDB was not implemented in this study. As 

the comparison study of MiXCR and ImmuneDB described that MiXCR by its more strict clonotyping algorithm, 

caused separation of clonotypes that may originated from the same clone.106  The process of MiXCR clustering 

the clones into clonotype described in detail (https://mixcr.readthedocs.io/en/develop/assemble.html#) shows that 

fuzzy matches of clonotypes are organized into hierarchical trees, and only their head are considered as final 

clones. It is possible to adjust the clustering strategy such as the number of cluster layers, maximum number of N 

nucleotides and probability factor of single nucleotide mutations, but these tweaks within the preprocessing 

pipeline was outside the scope of this study.  

The gene usage analysis is an important component of the repertoire clonality. The IGHV gene usage found 

IGHV3-23 as the most abundant gene across both groups and all samples. The finding is in consistence with the 

previous reports that IGHV3-23 gene was among the most commonly utilized gene.55,75,107 The findings higher 

IGHV3-23 usage in most R group samples were possibly associated with the gene ontology of IGHV3-23, such 

as the B cell receptor signaling pathway, classical complement activation pathway, positive regulation of B cell 

activation and etc. On the other hand, the previous literatures describing IGHV3-23 as the most used IGHV gene 

suggests that such interpretations may require caution.108 Gene usage analysis results can be affected by the 

sources and subsets of B cells and also the locations such as peripheral blood or tissue where it is obtained.107 

Future studies using larger cohort with more distinctive differences in repertoire is likely to demonstrate more 

drastic differences in gene usage or discover increased expression of selective IGHV with statistical significance.. 

The LymphoTrack preprocessing produced similar results to MiXCR preprocessing, although the results were 

obviously not identical. The reason for difference originates from the sequence merging process of LymphoTrack 

https://mixcr.readthedocs.io/en/develop/assemble.html


software, which uses exact sequence match. According to the manufacture’s guideline provided with the software, 

the exact sequences and the similar sequences up to two mismatched nucleotides are merged, producing the 

combined unique reads as outputs. The LymphoTrack Software implements a very stringent criteria for the 

identification of CDR3 regions, which is sometimes considered overly strict. Presence of frameshift mutation or 

mutations to the anchor amino acid will result in no CDR3 sequences identified using the LymphoTrack Software 

(Invivoscribe, personal communication, May 12, 2022). Therefore, the combine unique reads generated by 

LymphoTrack preprocessing, generates different number of clonotypes when compared to MiXCR preprocessing 

data.  

It is important to mention the time factor required for data analysis. The MiXCR tool has been previously 

mentioned of its rapid capability to handle large sequence data, without specific limitations of input.61 It is to our 

experience that MiXCR using the built-in library was able to process the input sequences in expedite, whereas the 

VDJPipe process performed online, required much more time in addition to the uploading of large sequence data. 

The VDJServer provides access to the high-performance computing (HPC) at the Texas Advanced Computing 

Center, which easily outpowers any personal computing system currently available in the consumer market. 

However, the access and quota to individual users are limited, and can be unpredictable (e.g., maintenance 

schedule, unexpected errors of server origin and possible override due to overuse). These were the limitations of 

cloud-based analysis portal that we experienced during the analysis of our data. On the other hand, the 

LymphoTrack software developed using Java, was also fast for processing input sequences, although this may 

depend on the systems specifications running the software.  

By comparing the preprocessing functions, most of the common and critical preprocessing steps for NGS data 

was included within each tool. However, the naming of processes varied, and some obvious functions were not 

specifically mentioned (i.e., quality filtering of LymphoTrack not mentioned). Barcode de-multiplexing and UMI 

identification is an important aspect of preprocessing, although our study data did not implement UMI for the 

generation of sequencing data, future studies with different samples will benefit from these features. Merging of 

paired-end data was done with agreeable percentages in all three preprocessing tools, of which the general 

sequencing quality was of more importance.  

From our evaluation of different pipelines, the computational consideration was an important aspect of the study. 

As the functions becomes more complex and resource dependent, the burden of computing resource increases 

almost exponentially when the size of input sequence data becomes larger. The most user and beginner friendly 



R language and its RStudio are fundamentally a statistics analysis package, which allocates its memory use 

directly on the physical memory. The requirements for hardware memory becomes higher in correlation with the 

size of the sequence data, in which the sequence data of 1 million generates an object size of 800~900 MB 

(megabytes).109 Use of parallel processing or virtual memory optimization is perhaps outside the scope of this 

study, and the sequence data of 15 samples (11,501,246 reads in total) would require at least 8~9 GB of memory. 

The requirements may vary according to the specific details such as number of clonotypes, sequence analysis 

level of gene/segment/family, but here we provide a baseline idea of computational requirements for AIRR-seq.  

 Use of AIRR-seq to explore the repertoire of adaptive immune system begins with the concept that sequence 

based interpretation can provide antigen-antibody interactions. However, this assumption of similarity in 

sequences to result in identical or similar antibody response has been proved to be not always accurate.20,110,111 

The high sequence similarity may correspond to structural resemblance, but when it comes down to the the 

conformation of functional protein interfaces, the similarity of sequences alone needs caution (Figure 24). The 

three-dimensional structure of two proteins show high similarity of 0.60Å (left), despite the different amino acids 

sequences (protein database, PDB accession ID: 3PHO, 3QUM). However, the almost matching sequences on the 

right, generate protein structures with different three-dimensional conformations which measures at 4.15Å (5ILG 

and 5ILC). The functional aspect of antibodies originates from the sequences, further structured in to eplets, 

epitopes, CDRs and furthermore, but the interpretation of antibody reactivity (function) would require caution.  

Retrospective use and the limited number of samples are some of the limitations of this study. The NR group in 

this study were included as normal controls, but the indications of kidney biopsies were not always protocol 

biopsies in which indications of possible rejections were present (Table 8). Due to the stringent criteria for R 

group, biopsies in R group were indication biopsies where need for evaluation was obvious, such as presence of 

DSA, urinary symptoms, and imaging findings suggestive of rejection. Also, the small number of NR group was 

a statistically limiting factor, not to mention the repertoire characteristics of low diversity indices somewhat 

suggesting presence of rejections. The comparison made between groups were neither statistically significant, 

although we suspect prospective paired-sample studies using larger number of samples will likely show 

statistically significant differences in the immune repertoire. 

Another limitation of the study is focusing only on the heavy chain data, and the absence of paired-light chain 

data. The pairing of VH/VL sequencing data supposedly can provide more information on the affinity and 

antigenic specificity.112 The definition of clonality of course includes the pairing of VH-VL, however the limited 



variability of light chain sequences often act as a restriction to evaluation of clonotypes on paired data.113 The 

LymphoTrack IGK - MiSeq is available as a separate assay, but was not included for this study. 

Further application of the data obtained through AIRR-seq is using as an input to machine-learning models to 

further investigate the difference between desired study groups. Due to the high diversity of immune repertoires, 

the comparison of two large datasets is often impossible without the proper tools developed for the specific 

purpose. For this, a well-structured learning dataset is necessary, and application of the pipeline used in this study 

is an applicable way of generating such dataset. Although this was not applied in this study, machine-learning 

model is a promising method of discovering new findings from AIRR-seq data.  

  



Sample Indication for renal biopsy 

R11 Hematuria and imaging findings (US) 

R13 DSA: A33(9607) 

R25 Graft dysfunction 

R35 Imaging findings 

R43 DSA: B60(3671), B64(1997), DR9(1346), DQ9(3644) 

R63 Severe hydronephrosis 

R64 DSA: DQ5(4637) 

R75 Graft dysfunction 

R80 Thrombotic microangiopathy 

R81 Low grade rejection 

R91 DSA: DQ5(10023) 

N30 Protocol biopsy 

N84 Protocol biopsy 

N88 Elevated creatinine 

N96 Symptomatic fluid collection 

Table 8. Indications for the kidney biopsies performed.  



 

  

Figure 24. An example of amino acid sequence and conformational structure similarity despite 

sequence differences (left) and structural difference despite high sequence similarity (right).  



 Conclusion 

 In this study, we evaluated the use of the LymphoTrack assay kit and application of three different preprocessing 

tools to construct an end-to-end repertoire analysis pipeline. The results of the repertoire comparison between 

ABMR samples and NR samples showed differences in clonality, diversity and the gene usages, despite the limited 

statistical significance. The application of AIRR-seq for KT proved to be a sensitive and robust method for 

analysis and comparison of the repertoire between samples and groups. With analytical reproducibility and a 

measure of correlation between the read depth and clonotypes, AIRR-seq can be used as a reliable indicator of the 

AIRR.  

While the vast variety of the pipelines used for bioinformatics analysis can be problematic for comparison 

between studies of their results, use of Immunarch R package was useful to overcome the hurdles of shell scripting, 

code writing and standardized method of analysis, using the sequence data generated by three preprocessing 

pipelines. The VDJServer was also useful tool providing integrated pipeline of tools on cloud-based webserver. 

Through comparison with most popular preprocessing tools of MiXCR and VDJPipe, LymphoTrack 

preprocessing was able to provide comparable results with MiXCR for features of the repertoire. Considering the 

availability of commercialized assay and the widely used platform, LymphoTrack assay in addition to its MRD 

application can be used for the repertoire analysis of more various purposes. Use of such commercially available 

assay kit has the strengths of improved reproducibility, accessibility, and standardization.  

The difference of results originated from the algorithms and their ability to handle input sequences differently. It 

is up to the users and the researchers to design their studies accordingly to the characteristics of the AIRR-seq 

tools that are currently available, and to comprehensively understand their utilities and applications. With the 

continuing efforts of the AIRR Community and the dedicated researchers, the field of AIRR-seq draws more 

attention to researchers looking for fundamental mechanism that underlies in the adaptive immune system. The 

use of AIRR-seq has promising applications in disease diagnosis, monitoring of prognosis, treatment response and 

possible drug discovery and biomarker developments. The value of this study adds to the very limited number of 

AIRR-seq studies targeting the BCR in cohort of KT. We conclude that by using commercialized assay kits and 

AIRR-compliant tools can provide valuable repertoire information in transplant patients, with future applications 

for novel biomarkers and potential therapeutic target discovery. 
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 Appendices 

Sample No. 

Sex/Age 

Ethnicity 

Raw reads 

(bases) 

Consensus sequences 

SRR8283601 

F/18 

Caucasian 218,356,368 24,592,893 

SRR8283619 

F/21 

Caucasian 341,880,369 39,963,919 

SRR8283655 

F/25 

African American 228,526,194 90,598,768 

SRR8283727 

F/29 

African American 267,970,240 13,528,917 

SRR8283755 

M/29 

Caucasian 295,183,125 17,991,497 

SRR8283773 

M/19 

African American 298,965,776 86,637,579 

SRR8283791 

M/29 

Caucasian 275,955,787 35,726,036 

SRR8283825 

F/30 

African American 320,844,194 11,767,640 

SRR8283843 

M/26 

Caucasian 332,209,280 30,967,338 

D103 

M/25 

Caucasian 322,781,254 11,746,606 

Supplementary Table 1. Demographic information and sequencing statistics of the samples obtained from SRA. 

Accession number PRJNA406949  

  



Data loading 

immdata <- repLoad(“/path to immdata”) 

Basic statistics and clonality 

repExplore(immdata$data, .method=”count”) %>% vis() 

repExplore(immdata$data, .method=”volume”) %>% vis() 

repClonality(immdata$data, "top") %>% vis() 

repClonality(immdata$data, "rare") %>% vis() 

repClonality(immdata$data, "homeo") %>% vis() 

Diversity 

repDiversity(immdata$data, "chao1") %>% vis() 

repDiversity(immdata$data, "hill") %>% vis() 

repDiversity(immdata$data, "d50") %>% vis() 

repDiversity(immdata$data, "div") %>% vis() 

 

V(D)J gene usage 

geneUsage(immdata$data, "hs.ighv", .type="family", .norm = T) %>% vis() 

geneUsage(immdata$data, "hs.ighj", .type="family", .norm = T) %>% vis() 

geneUsageAnalysis(imm_gu, .method = "js", .verbose = F) 

geneUsageAnalysis(imm_gu, .method = "cor", .verbose = F) 

imm_gu_js[is.na(imm_gu_js)] <- 0 

vis(geneUsageAnalysis(imm_gu, "cosine+hclust", .verbose = F)) 

Supplementary Table 2. Immunarch R commandlines used for repertoire analysis 

 



 Names N30 N84 N88 N96 R11 R13 R25 R35 R43 R63 R64 R75 R80 R81 R91 

1 IGHV1-18 0.051152 0.05451 0.033116 0.045567 0.019739 0.050167 0.053717 0.04952 0.0456 0.0446 0.048293 0.044958 0.042339 0.057511 0.042652 

2 IGHV1-2 0.005471 0.007989 0.010146 0.0245 0.0004 0.012499 0.01795 0.005844 0.036885 0.016578 0.025248 0.047117 0.000948 0.036337 0.007748 

3 IGHV1-24 0.006577 0.012228 0.003634 0.005948 0.002655 0.012724 0.013926 0.007307 0.009606 0.009928 0.011637 0.007138 0.006688 0.018417 0.009421 

4 IGHV1-3 0.01391 0.021011 0.016825 0.009646 0.017336 0.022025 0.025434 0.016775 0.008792 0.017774 0.010885 0.011945 0.019009 0.013334 0.018979 

5 IGHV1-45 0.000231 NA NA 8.66E-05 NA 0.00029 0.005577 0.000153 0.000127 0.000165 NA NA 4.53E-05 3.77E-05 NA 

6 IGHV1-46 0.019562 0.017111 0.012527 0.014767 0.008343 0.019185 0.015914 0.015626 0.015103 0.020517 0.014644 0.018235 0.011839 0.023794 0.014564 

7 IGHV1-58 0.005279 0.0036 0.003337 0.005492 0.001661 0.007004 0.00227 0.005733 0.003622 0.006775 0.005761 0.001272 0.003496 0.006777 0.004034 

8 IGHV1-69 NA NA NA 2.79E-06 NA NA 3.13E-06 NA NA NA NA NA NA NA NA 

9 IGHV1-69D NA NA NA NA NA NA NA NA NA NA 3.96E-06 NA NA NA NA 

10 IGHV1-8 0.012203 0.036247 0.012744 0.027886 0.008766 0.007465 0.010193 0.011284 0.013673 0.010244 0.026942 2.29E-05 0.022104 1.37E-05 0.022037 

11 IGHV2-26 0.00624 0.003428 0.001922 0.003858 0.001411 0.003502 0.00041 0.001786 0.004476 0.002572 0.00423 0.003867 0.001565 0.005155 0.004048 

12 IGHV2-5 0.005015 0.00824 0.005304 0.004481 0.004762 0.006413 0.009623 0.004908 0.004766 0.003352 0.009686 0.002335 0.005357 0.005172 0.007473 

13 IGHV2-70 0.004536 0.003304 0.005265 0.003651 0.002517 0.004413 0.001898 0.004015 0.00609 0.004141 0.005864 0.00326 0.001872 0.005306 0.002576 

14 IGHV3-11 0.000442 0.070328 0.016185 0.060574 0.047699 0.017714 0.022133 0.028356 0.026982 0.000429 0.072995 1.53E-05 0.074944 0.001941 0.062712 

15 IGHV3-13 0.014293 0.0142 0.010428 0.01777 0.008228 0.021803 0.021663 0.00985 0.016648 0.015609 0.007055 0.01462 0.026889 0.018077 0.019251 

16 IGHV3-15 0.088339 0.051034 0.062504 0.065785 0.051499 0.07112 0.056113 0.056738 0.074474 0.068661 0.027496 0.087133 0.056817 0.081257 0.081702 

17 IGHV3-20 0.030735 0.020323 0.007509 0.017932 0.000827 0.008369 0.010572 0.006197 0.009785 0.019206 0.005563 0.00551 0.014311 0.019298 0.005086 

18 IGHV3-21 0.002242 0.003489 0.007689 0.003218 0.000991 0.001369 0.008295 0.003369 0.004697 0.003905 0.000415 0.000344 0.002882 0.001855 0.002612 

19 IGHV3-23 0.303471 0.129024 0.27866 0.15089 0.357296 0.235307 0.203157 0.376055 0.222854 0.264432 0.211697 0.272501 0.197653 0.161266 0.2216 

20 IGHV3-30 6.60E-06 4.41E-05 NA NA NA 3.41E-06 NA NA 1.63E-05 NA NA NA NA NA 7.25E-06 

21 IGHV3-33 NA NA 1.20E-05 7.82E-05 3.28E-06 NA 3.13E-06 4.25E-06 4.09E-06 3.11E-06 NA 3.82E-06 6.97E-06 6.86E-06 3.63E-06 

22 IGHV3-43 0.008614 0.035978 0.019988 0.009096 0.01258 0.027575 0.023367 0.016685 0.037159 0.0347 0.019907 0.029363 0.026798 0.011486 0.030206 

23 IGHV3-48 0.001007 NA 0.001826 0.00081 0.004188 0.001587 0.00471 NA 4.09E-06 0.002059 3.17E-05 NA 0.001366 0.001152 0.00017 

24 IGHV3-49 0.006841 0.009541 0.006662 0.009258 0.003492 0.007454 0.002574 0.011131 0.013154 0.008322 0.0106 0.011494 0.004677 0.006945 0.01122 

25 IGHV3-53 NA NA NA NA NA NA NA NA NA 6.21E-06 NA NA NA NA NA 

26 IGHV3-64 0.002493 0.016277 0.007836 0.001131 0.001359 0.005413 0.010102 0.00293 0.012491 0.002575 0.007134 0.018377 0.001513 0.009785 0.006671 



27 IGHV3-66 NA NA 9.31E-05 2.79E-06 NA 0.000116 NA NA 4.09E-06 3.11E-06 0.000241 NA NA 1.71E-05 NA 

28 IGHV3-7 0.057079 0.075997 0.10824 0.110329 0.148968 0.084223 0.07803 0.060536 0.076346 0.087892 0.069078 0.081008 0.095043 0.06092 0.088333 

29 IGHV3-72 0.005742 0.007014 0.014831 0.009906 0.015734 0.009905 0.006686 0.004674 0.005637 0.005924 0.00937 0.005411 0.004691 0.007415 0.007523 

30 IGHV3-73 0.015607 0.010834 0.017867 0.019589 0.025679 0.017687 0.000849 0.011615 0.010967 0.011285 0.008218 0.013012 0.011554 0.008876 0.011557 

31 IGHV3-74 0.045863 0.029736 0.083597 0.0611 0.081209 0.040211 0.056451 0.031095 0.042391 0.050331 0.053951 0.032951 0.05338 0.040034 0.044781 

32 IGHV3-9 0.037933 0.081184 0.044219 0.098336 0.064743 0.026435 0.093844 0.061701 0.045191 0.035796 0.132905 2.67E-05 0.114651 2.40E-05 0.08686 

33 IGHV4-28 0.000116 0.00019 0.000309 0.000103 NA 0.000102 NA 8.51E-06 6.13E-05 7.14E-05 0.000384 1.15E-05 4.88E-05 0.000195 1.81E-05 

34 IGHV4-30-2 NA 0.005801 NA NA NA 0.004137 1.25E-05 0.005525 4.09E-06 NA NA 7.64E-06 NA NA 0.00234 

35 IGHV4-31 0.029041 0.029299 0.008386 0.011663 0.008415 0.021302 0.010544 0.012594 0.015958 NA 0.008337 0.020627 0.009867 0.012954 0.016403 

36 IGHV4-34 0.101998 0.093042 0.071358 0.073313 0.018084 0.110119 0.051553 0.061233 0.090816 0.131746 0.074281 0.083052 0.100731 0.21091 0.075473 

37 IGHV4-39 0.068262 0.096262 0.070262 0.08363 0.028321 0.080206 0.0818 0.069161 0.0951 0.066179 0.057196 0.107665 0.036512 0.103045 0.050538 

38 IGHV4-4 NA 0.000335 6.01E-06 0.010504 NA NA 0.007678 NA 0.009042 0.008238 0.011775 0.012629 NA 0.016054 0.000943 

39 IGHV4-59 NA 4.41E-06 3.90E-05 NA NA NA NA NA 4.09E-06 NA NA 3.82E-06 1.05E-05 NA NA 

40 IGHV4-61 NA 2.21E-05 0.000117 2.79E-06 3.28E-06 1.02E-05 3.13E-06 4.25E-06 1.63E-05 3.11E-06 0.000186 0.000218 NA 6.86E-06 0.000236 

41 IGHV5-10-1 0.009169 4.41E-06 0.006947 NA 3.28E-06 0.013185 0.004622 0.009349 0.00992 0.010086 NA 0.022129 NA 0.015759 NA 

42 IGHV5-51 0.027219 0.025876 0.024832 0.022726 0.01131 0.019868 0.019052 0.020862 0.024705 0.022645 0.016864 0.028109 0.017318 0.023273 0.0155 

43 IGHV6-1 0.012243 0.011809 0.014579 0.009071 0.028912 0.014151 0.045416 0.006465 0.006818 0.012922 0.01481 0.012293 0.009194 0.014758 0.007832 

44 IGHV7-4-1 0.00107 0.014685 0.0102 0.007291 0.012863 0.014939 0.023856 0.010909 1.23E-05 0.000329 0.016314 0.001334 0.023881 0.000837 0.01689 

Supplementary Table 3. IGHV gene usage analysis results of individual samples.  

The fraction of which each IGHV genes constitute the repertoire of each specimen are shown.  



 Abstract

Backgrounds: The adaptive immune repertoire is responsible for protection of the body from various pathogens 

and foreign substances. The immune system is comprised of various immune cells and signaling pathways of 

which balance and interaction between its components are of importance. The innate immune system and the 

adaptive immune systems are the two main components of the immune system. The adaptive immune system can 

be characterized by its ability to respond to almost unlimited number of different pathogens, through antigen 

recognition using the corresponding receptors. The ability to generate the vast number of antibodies is summarized 

as the antibody repertoire, so called the adaptive immune receptor repertoire (AIRR). The fundamental ability of 

T cell receptors and immunoglobulin receptors being able to recognize the different antigens rely on the existence 

of immune cells of different clones. Such vast diversity of immune cell clones is generated through mechanisms 

of V(D)J recombination, somatic hypermutation and class switching, etc. The V, D and J segments of the IGH 

gene distributed throughout the genome is rearranged to facilitate immune response to different antigens and the 

consequent ability to generate antibodies.  

The improvements in outcome of solid organ transplantation during the past few decades has benefited from the 

better understanding of the immune system and histocompatibility. Especially the use of efficient 

immunosuppressants have improved the outcome of kidney transplantation, although further improvements in 

long-term outcome has been marginal since the 2000’s. The major limiting factor in improving the long-term 

outcome remains to be antibody-mediated rejection. There remains a great unmet need for development of specific 

and early biomarkers that could predict development of antibody-mediated rejection or monitor treatment 

responses. AIRR analysis in kidney transplantation has been applied in limited number of studies, mostly focusing 

on the T cell receptors. In this study we applied NGS analysis of the AIRR for the assessment of B cell repertoire 

in kidney transplantation recipients. In specific, here we address the various tools and packages used for AIRR 

analysis pipelines and compare their characteristic features, limitations and attempt to provide a standardized 

pipeline that can be used for AIRR-seq.  

Method: Kidney transplantation recipients who underwent kidney transplantation during December 1996 and 

March 2021 were enrolled. Those who received ABO-compatible kidney transplantation with available pre-

transplantation immunologic and histocompatibility status results and followed up for post-transplantation 

monitoring which included kidney biopsy were selected for study. Total of 15 patients were selected and classified 



by their kidney biopsy results, according to the Banff 2017 revised diagnostic criteria, into two groups: Antibody-

mediated rejection (ABMR) group and No rejection (NR) groups. To assess the laboratory analytical features of 

AIRR-seq, the reproducibility and changes in clonotypes according to target read depth were also analyzed. To 

compensate the limited number of NR group samples, normal control sequences were obtained from the NCBI 

SRA database. The NGS analysis used the LymphoTrack assay kit which is a commercialized assay kit based on 

the BIOMED-2 protocol used for assessment of clonality. AIRR analysis included clonality, diversity, CDR3 

analysis and gene usages. The difference of pipelines and the tooled used accordingly were compared by 

comparing three different pipelines constructed by using MiXCR, VDJPipe and LymphoTrack softwares.  

Results: The result of AIRR analysis showed different results between the two groups. The number of clones and 

clonotypes was different between groups and between samples. Application of a specific cutoff value, such as 

5,000 clonotypes generated statistically significant differences between groups. Diversity and clonality was found 

different between ABMR and NR groups but the limited number of samples were unable to show statistically 

significant differences. Various indices of diversity, Chao1, Hill number and D50 were all shown to be lower in 

ABMR group compared to NR group. The results in repertoire analyses were consistent in all three preprocessing 

pipelines, except for the clonotyping feature, of which consistency between MiXCR and LymphoTrack pipelines 

was observed. Using the SRA normal control sequence data, the number of clones and clonotypes correlated with 

the increasing number of read depth, suggesting the need for higher target read depth than conventional targets. 

The reproducibility was found consistent from the stable clonotype number, despite the varying degree of clones 

according to different read depths.  

Conclusion: The AIRR analysis of kidney transplant recipients have shown different characteristics of AIRR using 

post-transplantation samples. Use of commercialized assay kit was suitable for AIRR-seq and the repertoire 

analysis considering the importance of standardization and reproducibility of data. The pipelines constructed and 

compared in this study using LymphoTrack were capable in terms of preprocessing and repertoire analysis. Its 

popular application for larger studies and different study subjects is highly anticipated for the future.  

Key words: B cell, Adaptive immunity, repertoire, sequencing, high-throughput, kidney transplantation, antibody-

mediated, T cell-mediated, rejection 
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