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ABSTRACT

Background: Severe burns may involve all of the organs which lead to a series of pathophysiological 

process resulting in mortality. The clinicians are acknowledging the importance of predicting mortality 

to increase the survival. The pathophysiology of burn is characterized by the inflammatory reaction 

resulting in serious complication. The red cell distribution width (RDW) is one of the component of 

complete blood cell count which is recently studied by various medical field for its ability as an indicator 

of systemic inflammation and as a predictor of mortality. Recently, machine learning model has gained 

attention for the diagnostic and prognostic performance that automatically build analytical models to 

predict postoperative mortality. Therefore, the author evaluated the risk factors including RDW that 

predict mortality in patients after burn surgery and also evaluated the clinical features to establish 90-

day mortality prediction model using machine learning technique. 

Objective: The author evaluated the RDW and other perioperative characteristics as risk factors for 

mortality prediction in patients after burn surgery. Also, these risk factors were analyzed using machine 

learning technique to evaluate the prediction ability of different machine learning models. 

Methods: The preoperative clinical features including laboratory findings and basic characteristics of 

patients were collected. Risk factors for mortality after burn surgery were evaluated using univariate 

and multivariate logistic regression analyses. In addition, the incidence of postoperative acute kidney 

injury (AKI) was evaluated. A receiver operating characteristic (ROC) curve analysis of the

preoperative RDW was performed. The 90-day mortality rate was analyzed using the Kaplan-Meier 

survival analysis with a log-rank test to compare the survival rate after the burn surgery. The hazard 

ratio of mortality in RDW groups by the cutoff value was analyzed using Cox proportional-hazards 

regression. Also, clinically important features for predicting mortality in patients after burn surgery 

were selected using a random forest regressor. The author evaluated the area under the ROC curve 

(AUC) and classifier accuracy to compare the predictive accuracy of prediction by machine learning 

algorithms including random forest, adaptive boosting, decision tree, linear support vector machine, 

and logistic regression.
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Results: Those who met the inclusion and exclusion criteria were 731 patients. The 90-day mortality 

of the patients after the burn surgery was 27.1% (198/731). Among the preoperative variables, age 

[Odds ratio (OR) 1.067; 95% confidence interval (CI) 1.047-1.088], DM (OR 3.211; 95% CI 1.288-

8.000), ASA PS III & IV (OR 4.918; 95% CI 1.581-15.305), TBSA burned (OR 1.095; 95% CI 1.078-

1.113), RDW (OR 1.679; 95% CI 1.378-2.046), prothrombin time (OR 4.649; 95% CI 1.259-17.171), 

and creatinine (OR 1.818; 95% CI 1.181-2.798) were considered independent risk factors for mortality 

in the multivariate logistic regression analysis. Cox proportional hazards regression was used to analyze 

the mortality, and the hazard ratio after multivariable adjustment was 1.238 (95% CI 1.138-1.347, p < 

0.001) in the RDW > 12.9 group. In addition, the incidence of postoperative AKI was higher in the non-

survivor group than in the survivor group (88, 44.4% vs. 30, 5.6%, p < 0.001). As for machine learning 

model, a total of 11 clinical features were selected using the random forest regressor from the 16 features. 

The 11 features included were age, ASA PS, TBSA burned, hemoglobin, RDW, platelet, prothrombin 

time, albumin, creatinine, platelet-lymphocyte ratio, and systemic immune-inflammation index which 

is calculated by (neutrophil x platelet)/lymphocyte. Of these 11 features, the most significant predictors 

were TBSA burned (0.28447 ± 0.28447), RDW (0.10053 ± 0.10053), and age (0.08842 ± 0.08842). 

Random forest showed the highest AUC (0.922 ± 0.020, 95% CI 0.902-0.942) among the other models 

with sensitivity and specificity of 66.2% and 93.8%, respectively. The pairwise comparisons of the AUC 

using DeLong’s test demonstrated that random forest (AUC = 0.922) showed no statistical difference 

with adaptive boosting (AUC = 0.915).

Conclusion: This study reveals that preoperative RDW could have the ability to predict 90-day 

mortality in patients after burn surgery. Furthermore, in patients with high RDW prior to burn surgery, 

postoperative AKI increases the mortality rate further. Therefore, patients with high RDW before burn 

surgery should be aware of the development of postoperative AKI. Also, this study demonstrated that 

the most significant predictors for mortality after burn surgery are TBSA burned, RDW, and age. 

Random forest showed the best performance for predicting mortality among other models.
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GENERAL INTRODUCTION

Burns are one of the most devastating traumatic injury that causes of morbidity and mortality 

throughout the world. Burn wounds induce excessive inflammatory response that triggers the immune 

system to protect against risk of infection which can be detrimental and be fatal.1 The inflammatory 

mediators produced and released after burn injury affects microcirculation which results in significant 

hypovolemic shock and substantial tissue injury.2 The challenging resuscitation and treatment with 

further adverse outcomes lead to advance in studies related to predicting risk factors. Early detection 

with recognition of risk factors associated with mortality may be essential in the management of burn 

injury. 

The extent of injury is described using the percentage of the total body surface area (TBSA) 

that is affected by a burn. The evaluation of TBSA burned is important during the initial management 

for estimating fluid requirements. TBSA burned is known to be one of the risk factors of mortality in 

burn injury since higher TBSA leads to poor prognosis.3 Age is another well-known risk factor of 

mortality in burn patients.4 The underlying medical conditions of the elderly, the impaired response to 

infection, decreased ability to tolerate stress and physiological insult, and poor nutritional status may 

influence the adverse outcome of the old aged patients after burn injury.5-7 Another major risk factor 

that affects mortality in burn is the presence of inhalation injury. Inhalation injury is reported to be third 

most important factor in the prediction of mortality in burn patients.8 Burn injury with flames may 

accompany inhalation injury with different severity. Since inhalation injury is directly related to airway, 

the consequences of this injury may be fatal.9,10

Several preoperative variables are analyzed for their predictive ability of mortality in burn 

patients. Complete blood count (CBC) is one of the routinely applied laboratory blood tests for most of 

the patients. The unique components of CBC are known to be related with inflammation or infection 

that affects the prognosis of the medical conditions.11 Of these simple blood biomarker, red cell 

distribution width (RDW) is a numerical measurement of the range in the volume and size of the 

erythrocytes. An increase of RDW may reflect conditions that modify erythrocyte shapes as a result of 
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premature release of immature cells into the bloodstream as in case of massive blood loss.12 In addition, 

reports have shown that inflammation contributes to an increased RDW by inhibiting the production of 

erythropoietin or by decreasing erythrocyte survival.13,14 Recently, RDW has been known to have a 

prognostic ability to predict morbidity and mortality in various clinical conditions.15 In burn patients, 

high RDW was associated with adverse outcomes with mortality but was not an independent risk 

factor.16,17 The author sought to investigate the prognostic ability of preoperative RDW as an 

independent risk factor after burn surgery. 

One of the serious and common complication of burn injury is acute kidney injury (AKI).18 The 

occurrence of AKI is multifactorial and complicated which usually relates to mortality.19 Severe burn 

patients are subjected to aggressive fluid resuscitation which is preceded by extreme volume depletion 

and this resuscitation is the culprit for intra-abdominal hypertension and abdominal compartment 

syndrome.20 This process leads to decreased renal perfusion and inflammation which accelerates renal 

failure. Studies have investigated on the impact of RDW on prognosis for critically ill patients with AKI

or patients with AKI after cardiac surgery.21,22 However, the association of RDW and AKI in burn 

patients is not clearly known. Thus, the author attempted to evaluate the impact of RDW in AKI patients.   

Machine learning is a subset of artificial intelligence (AI) that develops algorithms and 

technologies that enable computers to learn. Machine learning is one of the statistical methods for 

extracting regularity from the data. In machine learning, there are various models or algorithms that 

extract laws, predict, and classify them. Applications of machine learning have advanced recently in the 

various aspects of medicine.23 Logistic regression is a traditional model commonly employed in medical 

applications to interpret clinical data in depth. On the other hand, the machine learning models recently

include random forest (RF), adaptive boosting (AB), decision tree (DT), support vector machine (SVM), 

and logistic regression (LGR) which are methods to find a more optimal predictive model.24-27

In anesthesiology, the applications of this machine learning include depth of anesthesia 

monitoring, control of anesthesia, event and risk prediction, ultrasound guidance, pain management, 

and operating room logistics.28 Machine learning model has gained attention for the diagnostic 
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performance that automatically build analytical models to predict postoperative mortality.29 Mortality 

prediction in burn injury is considered crucial in the early management which can affect the outcome 

of the patients. Studies in machine learning models for mortality prediction in burn injury are in progress 

since decades ago.30,31 The application of machine learning in burn injury enables clinicians to reveal 

and learn the patterns or correlations that was not disclosed by the traditional linear statistical analysis.32

Not only machine learning for mortality prediction is being studied but also prediction of sepsis and 

AKI in burn patients is an issue of concern.33 However, the performance ability of the machine learning 

on mortality after burn surgery is not clearly elucidated. 

In this doctoral thesis, the author sought to evaluate preoperative risk factors including RDW for 

90-day mortality in patients after burn surgery. In Chapter 1, the author evaluated preoperative risk 

factors, including preoperative RDW, for prediction of mortality after burn surgery. The identification 

of the incidence of postoperative AKI in burned patient and its association with RDW will be discussed.

In Chapter 2, the author focused the preoperative clinical features to establish and compare the machine 

learning techniques for prediction of mortality after burn surgery. 
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CHAPTER 1

Preoperative red cell distribution width as a prognostic factor 

to predict 90-day mortality after burn surgery
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1.1. INTRODUCTION

Burn injuries can lead to serious complications that affect almost every organ system and result 

in significant morbidity and mortality.34 However, mortality has decreased with the advances in 

treatments of managing burn patients throughout the world and with vast amount literature based on 

risk factors and predictors of mortality.35,36 Thus, the importance of predicting complications of burn 

injury is being acknowledged by most of the clinicians. One of the serious complication is AKI which 

is the result of massive fluid loss and inflammation after burn injury. Since the progression of AKI leads 

to mortality, it is essential to understand the association of this complication with the perioperative 

variables. 

Several biomarkers have been reported which is known to predict mortality in burn patients. 

After burn injury, systemic inflammatory response eventually results in leukopenia, thrombocytopenia, 

and coagulopathy.37 One of the simple blood test to check this response is CBC. Inflammatory markers 

as a prognostic value include neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), 

monocyte-lymphocyte ratio (MLR), and systemic immune- inflammation index (SII) which is easily 

calculated.38 Of these simple blood biomarker, RDW has been known to predict morbidity and mortality 

in various clinical conditions.15 Traditionally used as a differential diagnosis of anemias, RDW has 

become a predictor of mortality in cardiovascular and respiratory diseases recently.39-41 This prognostic 

value of RDW can also be applied to burn patients.16,17 In addition, RDW can act as an independent risk 

factor in predicting acute respiratory distress syndrome after severe burn injury.42 However, the 

association of preoperative RDW with mortality in the patients after burn surgery is not clearly known.

Thus, the purpose of the present study was to investigate the predictive value of RDW as a risk 

factor in 90-day mortality after burn surgery. Also, other preoperative risk factors that affect mortality 

of the patients after burn surgery have been analyzed. 
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1.2 METHODS

Study population 

Patients admitted to intensive care unit (ICU) before burn surgery from January 2010 to 

February 2018 were recruited. Data from the first burn surgery were collected for patients who had 

several burn surgeries. Inclusion criteria were patients administered with second- or third-degree burn 

who underwent burn surgery within 14 days of burn event. Patients under 18 years old, who underwent 

local anesthesia, with TBSA burned less than 20%, and with known chronic kidney disease were 

excluded from the study. We reviewed electronic medical record of these patients to obtain the 

laboratory and clinical data. This retrospective study was approved by the Institutional Review Board 

of the Ethical Committee of Hangang Sacred Heart Hospital, Hallym University, Seoul, Korea (No. 

2018-057).    

Anesthetic and surgical techniques 

All patients fasted for 8 hours prior to surgery. In the operating room, patients were monitored 

with blood pressure, electrocardiography, and pulse oximetry before the induction of general anesthesia. 

Anesthesia was induced with propofol (1.5-2 mg/kg) and rocuronium (0.6-0.8 mg/kg). Anesthesia was 

maintained at a fractional inspired oxygen concentration of 0.5 with nitrous oxide combined with 

sevoflurane (2.0-3.0 vol%) or desflurane (6.0-8.0 vol%). The tidal volume was set to 8-10 mL/kg of 

ideal body weight, and the respiratory rate was adjusted to maintain an end-tidal CO2 level of 30-35 

mmHg. Fluid administration was controlled according to our institutional protocol based on the mean 

arterial blood pressure, heart rate, urine output and blood loss. For fluid management, crystalloid was 

administered at a rate of 6–10 mL/kg/h, and colloid was administered when the blood loss was estimated 

as >500 mL during the burn surgery. Packed red blood cells (RBC) were transfused to maintain the 

hemoglobin concentration with ≥ 8 g/dL. The mean blood pressure was controlled to maintain at > 65 

mmHg. Types of burn surgeries included escharectomy, fasciotomy, cadaveric skin graft, or split-



7

thickness skin graft. The necrotic burn area was removed up to a possible depth with tangential excision 

for smaller burns and fascial excision for larger burns according to the burn depth. Deep second- or 

third-degree burn requires a skin graft such as a temporary cadaveric skin graft or a permanent autograft 

depending on the burn size and depth.43

Data collection 

The demographic data, laboratory data, and other variables of the patients were reviewed and 

collected using the electronic medical record system. Preoperative characteristics of the patients include 

sex, age, body mass index (BMI), history of hypertension (HTN) or diabetes mellitus (DM), American 

Society of Anesthesiologists physical status (ASA PS), TBSA burned, and the presence of inhalation 

injury. TBSA burned refers to any type of burn involving certain percentage of body surface with 

second- or third-degree burn. The presence of inhalation injury was diagnosed by bronchoscopic finding, 

which were classified as normal, mild, moderate or severe. Bronchoscopic findings other than normal 

were considered that inhalation injury is present. All the preoperative blood tests were performed in the 

early morning on the day of the surgery or on the day before surgery. These preoperative laboratory 

data include hemoglobin, platelet, prothrombin time, albumin, creatinine, RDW, NLR, PLR, MLR, and 

SII. NLR, PLR, MLR, and SII were each calculated using the given information of the CBC results. 

NLR is the ratio between neutrophil and lymphocyte, PLR is the ratio between platelet and lymphocyte, 

and MLR is the ratio between monocyte and lymphocyte.44-46 SII was calculated using the following 

formula: (granulocyte × platelet)/lymphocyte.47 Duration of anesthesia along with hospital and ICU stay 

were recorded. In addition, postoperative AKI was investigated according to the Kidney Disease: 

Improving Global Outcomes (KDIGO) criteria, which is defined by an increase in serum creatinine by 

0.3 mg/dL within 48 hours or an increase in serum creatinine to ≥ 1.5 times the baseline within 7 days 

postoperatively.48 Daily creatinine levels were checked for 7 consecutive postoperative days for the 

diagnosis of AKI. The urine output criterion of KDIGO was not used because of inconsistency in the 

urine output measurement.



8

Primary and secondary outcomes

The primary endpoint was the analysis of prediction ability of RDW in 90-day mortality after 

the burn surgery. The secondary endpoint of this study was the identification of the incidence of 

postoperative AKI in burned patient and its association with preoperative RDW.

Statistical analysis 

Patients were divided into non-survivor and survivor groups. All continuous variables were 

presented as mean ± SD. The variables were analyzed between non-survivor and survivor groups using 

Student’s t test or the Mann-Whitney U test, as appropriate. Categorical variables were presented as 

number (percentage) and were analyzed using chi-square test or Fisher’s exact test, as appropriate. Risk 

factors for 90-day mortality after burn surgery were identified using univariate and multivariate logistic 

regression analysis. A two-tailed p-values <0.05 were considered statistically significant. The 

significant factors in univariate logistic regression were analyzed in the backward stepwise elimination 

procedure of the multivariate logistic regression analysis. The receiver operating characteristic (ROC) 

curve analysis was used to determine the ability of RDW to predict mortality after burn surgery. The 

area under the ROC curve (AUC) was calculated by the trapezoid rule. The RDW value with the highest 

sensitivity and specificity was set as the optimal cut-off value. The 90-day mortality rate was analyzed 

using the Kaplan-Meier survival analysis with a log-rank test to compare the survival rate after the burn 

surgery between the two groups. In addition, hazard ratio of mortality in RDW groups by the cutoff 

value was analyzed using Cox proportional-hazards regression. All statistical analyses were performed 

with SPSS for Windows (version 24.0; IBM-SPSS Inc., Armonk, NY, USA).  
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1.3 RESULTS

Study population 

A total population of 1488 patients were admitted to the ICU before burn surgery. Those who 

met the inclusion and exclusion criteria were 731 patients (Figure 1.1). The 90-day mortality of the 

patients after the burn surgery was 27.1% (198/731). 

Primary outcome 

There were no statistically significant differences with regard to sex, body mass index, 

hemoglobin, NLR, PLR, MLR, and SII (Table 1.1). The age and TBSA burned (%) were significantly 

higher in the non-survivor group than in the survivor group (p < 0.001 for both). Also, the number of 

patients with DM (p < 0.001), HTN (p = 0.003), and inhalation injury (p < 0.001) were higher in the 

non-survivor group than in the survivor group. For the laboratory findings, platelet count, prothrombin 

time, RDW, albumin, and creatinine showed significant difference between the two groups. Univariate 

logistic regression analysis identified that age, DM, HTN, ASA PS III & IV, TBSA burned, inhalation 

injury, RDW, platelet, prothrombin time, albumin, and creatinine were significantly associated with 90-

day mortality of patients after burn surgery (Table 1.2). Of these factors, age [Odds ratio (OR) 1.067; 

95% confidence interval (CI) 1.047-1.088], DM (OR 3.211; 95% CI 1.288-8.000), ASA PS III & IV 

(OR 4.918; 95% CI 1.581-15.305), TBSA burned (OR 1.095; 95% CI 1.078-1.113), RDW (OR 1.679; 

95% CI 1.378-2.046), prothrombin time (OR 4.649; 95% CI 1.259-17.171), and creatinine (OR 1.818;

95% CI 1.181-2.798) were considered independent risk factors for mortality in the multivariate logistic 

regression analysis. 

Figure 1.2 shows the ROC curve analysis for the preoperative RDW for prediction of mortality 

after burn surgery. The AUC was 0.701 with an optimal cutoff value of 12.9, sensitivity of 73.7 %, and 

specificity of 58.0 %. The patients were divided into two groups according to the cut-off value of RDW 

for the Kaplan-Meier survival analysis. Table 1.3 demonstrates the comparison of baseline 

characteristics and laboratory findings between RDW ≤ 12.9 group (n = 361) and RDW > 12.9 group 
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(n = 370). Among the collected variables, age, sex, DM, TBSA burned, inhalation injury, hemoglobin, 

RDW, prothrombin time, albumin, creatinine, NLR, PLR, and SII showed significant difference 

between the two groups. Cox proportional hazards regression was used to analyze the mortality, and the 

hazard ratio after multivariable adjustment was 1.238 (95% CI 1.138-1.347, p < 0.001) in the RDW > 

12.9 group (Table 1.4). The variables used for multivariate adjustment were age, DM, HTN, ASA PS, 

TBSA burned, inhalation injury, platelet, prothrombin time, albumin, creatinine, and RDW. The survival 

probability of the group with RDW ≤ 12.9 was 85.6% and the group with RDW > 12.9 was 61.1% on 

day 90 (Figure 1.3). Also, ICU stay, postoperative incidence of AKI, and 90-day mortality were 

significantly different between the two groups (Table 1.5).
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Figure 1.1. Flow diagram of the study participants. ICU, intensive care unit. TBSA, total body surface 

area.
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Table 1.1. Baseline characteristics and laboratory findings of the survivor and non-survivor group

Variables Survivor group

(n = 533)

Non-survivor group

(n = 198)

p-value

Age, yr 52.0 ± 14.4 58.0 ± 15.9 <0.001

Sex, male/female 441 (82.7)/92 (17.3) 166 (83.8)/32 (16.2) 0.825

Body mass index, kg/m2 23.6 ± 3.4 23.5 ± 3.1 0.765

Diabetes mellitus 22 (4.1) 26 (13.1) <0.001

Hypertension 72 (13.5) 45 (22.7) 0.003

ASA PS <0.001

I 71 (13.3) 6 (3.0)

II 240 (45.0) 26 (13.1)

III & IV 222 (41.7) 166 (83.8) 

TBSA burned, % 38.5 ± 15.1 63.6 ± 20.7 <0.001

Inhalation injury 165 (31.0) 110 (55.6) <0.001

Hemoglobin, g/dL 13.5 ± 3.0 13.9 ± 3.5 0.100

RDW 13.0 ± 1.0 13.8 ± 1.4 <0.001

Platelet count, ´109/L 204.8 ± 111.3 180.5 ± 133.8 0.023

Prothrombin time, INR 1.1 ± 0.2 1.2 ± 0.3 <0.001

Albumin, g/dL 2.9 ± 0.8 2.5 ± 0.9 <0.001

Creatinine, mg/dL 0.78 ± 0.42 1.02 ± 0.62 <0.001

NLR 10.6 ± 19.1 11.2 ± 15.7 0.695

PLR 276 ± 464 304 ± 606 0.553

MLR 0.85 ± 1.31 1.13 ± 2.39 0.121

SII 2171 ± 4108 1909 ± 3783 0.435

Data are shown as mean ± standard deviation or number (%) as appropriate. ASA PS, American Society 

of Anesthesiologists physical status; TBSA, total body surface area; RDW, red cell distribution width; 

INR, international normalized ratio; NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio; 

MLR, monocyte-lymphocyte ratio; SII, systemic immune inflammation index.
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Table 1.2. Univariate and multivariate analyses for evaluating the risk factors of mortality after burn 

surgery

Univariate analysis Multivariate analysis

Variables Odds ratio (95% CI) p-value Odds ratio (95% CI) p-value

Age, yr 1.027 (1.016–1.039) <0.001 1.067 (1.047–1.088) <0.001

Diabetes mellitus 3.511 (1.940–6.356) <0.001 3.211 (1.288–8.000) 0.012

Hypertension 1.883 (1.244–2.852) 0.003 1.348 (0.683–2.660) 0.389

ASA PS

I 1.000 (Reference) 1.000 (Reference)

II 1.282 (0.508–3.237) 0.599 1.101 (0.329–3.681) 0.876

III & IV 8.848 (3.755–20.852) <0.001 4.918 (1.581–15.305) 0.006

TBSA burned, % 1.075 (1.063–1.087) <0.001 1.095 (1.078–1.113) <0.001

Inhalation injury 2.788 (1.994–3.898) <0.001 1.380 (0.844–2.257) 0.199

Hemoglobin, g/dL 1.048 (0.995–1.104) 0.075

RDW 1.711 (1.471–1.990) <0.001 1.679 (1.378–2.046) <0.001

Platelet count, ´109/L 0.998 (0.997–1.000) 0.014 0.999 (0.997–1.001) 0.477

Prothrombin time, INR 29.531 (10.480–83.213) <0.001 4.649 (1.259–17.171) 0.021

Albumin, g/dL 0.596 (0.480–0.741) <0.001 0.981 (0.686–1.404) 0.916

Creatinine, mg/dL 2.894 (1.908–4.391) <0.001 1.818 (1.181–2.798) 0.007

NLR 1.002 (0.993–1.010) 0.696

PLR 1.000 (1.000–1.000) 0.506

MLR 1.090 (0.994–1.195) 0.068

SII 1.000 (1.000–1.000) 0.440

CI, confidence interval; ASA PS, American Society of Anesthesiologists physical status; TBSA, total 

body surface area; RDW, red cell distribution width; NLR, neutrophil-lymphocyte ratio; PLR, platelet-

lymphocyte ratio; MLR, monocyte-lymphocyte ratio; SII, systemic immune-inflammation index; INR, 

international normalized ratio. 
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Figure 1.2.  Receiver operating characteristics (ROC) curve analysis of preoperative red cell 

distribution width (RDW) for prediction of mortality after burn surgery. ROC curve was used to 

determine the cut-off value of RDW which was 12.9. The area under the ROC curve (AUC) was 0.701.

0 20 40 60 80 100

0

20

40

60

80

100

100-Specificity (%)

S
en

si
ti

v
it

y 
(%

)

AUC:   0.701



15

Table 1.3. Baseline characteristics and laboratory findings of RDW ≤ 12.9 and RDW > 12.9 group 

Variables RDW ≤ 12.9

(n = 361)

RDW > 12.9

(n = 370)

p-value

Age, yr 50.7 ± 14.7 56.5 ± 14.8 <0.001

Sex, male/female 311 (86.1)/50 (13.9) 296 (80.0)/74 (20.0) 0.03

Body mass index, kg/m2 23.6 ± 3.5 23.5 ± 3.2 0.623

Diabetes mellitus 11 (3.0) 37 (10.0) <0.001

Hypertension 49 (13.6) 68 (18.4) 0.086

ASA PS 0.025

I 47 (13.0) 30 (8.1)

II 138 (38.2) 128 (34.6)

III & IV 176 (48.8) 212 (57.3)

TBSA burned, % 42.1 ± 18.5 48.5 ± 21.2 <0.001

Inhalation injury 114 (31.6) 161 (43.5) <0.001

Hemoglobin, g/dL 14.2 ± 2.8 12.9 ± 3.3 <0.001

Platelet count, ´109/L 199.5 ± 104.5 196.9 ± 130.3 0.764

Prothrombin time, INR 1.1 ± 0.2 1.2 ± 0.3 <0.001

Albumin, g/dL 2.9 ± 0.8 2.7 ± 0.8 0.001

Creatinine, mg/dL 0.77 ± 0.25 0.92 ± 0.64 <0.001

NLR 8.2 ± 9.3 13.3 ± 23.6 <0.001

PLR 247 ± 386 320 ± 598 0.05

MLR 0.84 ± 1.13 1.01 ± 2.08 0.174

SII 1683 ± 2872 2507 ± 4859 0.005

Data are shown as mean ± standard deviation or number (%) as appropriate. ASA PS, American Society 

of Anesthesiologists physical status; TBSA, total body surface area; RDW, red cell distribution width; 

INR, international normalized ratio; NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio; 

MLR, monocyte-lymphocyte ratio; SII, systemic immune-inflammation index.
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Table 1.4. Hazard ratio of mortality in patients with RDW ≤ 12.9 and RDW > 12.9. 

Crude Multivariable adjusted

HR (95% CI) p-value HR (95% CI) p-value

90-day 
mortality 

RDW 

≤ 12.9

n=361 1 (reference) 1 (reference)

RDW 

> 12.9

n=370 1.327 (1.239-1.422) < 0.001 1.238 (1.138-1.347) <0.001

* Multivariate analysis adjusted for age, diabetes mellitus, hypertension, American Society of 

Anesthesiologist physical status, total body surface area burned, inhalation injury, platelet, prothrombin 

time, albumin, creatinine, and red cell distribution width. HR, hazard ratio; CI, confidence interval; and 

RDW, red cell distribution width.
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Figure 1.3. Kaplan-Meier curve of 90-day survival of the patients after the burn surgery. The green line 

(solid) indicates the group with RDW ≤ 12.9 and the orange line (dotted) indicates the group with RDW 

> 12.9. 
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Table 1.5. Intraoperative and postoperative characteristics of RDW ≤ 12.9 and RDW > 12.9 group

Variables RDW ≤ 12.9

(n = 361)

RDW > 12.9

(n = 370)

p-value

Duration of anesthesia, min 142.6 ± 50.7 145.0 ± 53.9 0.530

Hospital stay, day 60.1 ± 35.1 55.6 ± 44.8 0.139

ICU stay, day 23.3 ± 17.1 30.7 ± 27.2 <0.001

Postoperative AKI  31 (8.6) 87 (23.5) <0.001

90-day mortality 52 (14.4) 146 (39.5) <0.001

Data are shown as mean ± standard deviation or number (%) as appropriate. RDW, red cell distribution 

width; ICU, intensive care unit; and AKI, acute kidney injury.
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Secondary outcome 

In addition, the incidence of postoperative AKI was higher in the non-survivor group than in 

the survivor group (88, 44.4% vs. 30, 5.6%, p < 0.001). The duration of anesthesia showed no significant 

difference between the two groups (p = 0.844). The hospital stay was 71.4 ± 37.5 days for the survivor 

group and 21.2 ± 19.9 days for the non-survivor group (p < 0.001). The ICU stay was 29.1 ± 23.8 days 

for the survivor group and 21.4 ± 19.6 days for the non-survivor group (p < 0.001) (Table 1.6).

Subgroup analysis according to postoperative AKI showed that the survival rate on day 90 was 

88.8%, 74.2%, 51.6%, and 17.6% for the groups of non-AKI with RDW ≤ 12.9, non-AKI with RDW > 

12.9, AKI with RDW ≤ 12.9, and AKI with RDW > 12.9 (log rank test, p < 0.001) (Figure 1.4).
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Table 1.6. Intraoperative and postoperative characteristics of survivor and non-survivor group

Variables Survivor group 

(n=533)

Non-survivor group 

(n=198)

p-value

Duration of anesthesia, min 144.5 ± 51.9 143.6 ± 52.6 0.844

Hospital stay, day 71.4 ± 37.5 21.2 ± 19.9 <0.001

ICU stay, day 29.1 ± 23.8 21.4 ± 19.6 <0.001

Postoperative AKI 30 (5.6) 88 (44.4) <0.001

Data are shown as mean ± standard deviation or number (%) as appropriate. ICU, intensive care unit; 

and AKI, acute kidney injury.
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Figure 1.4. Kaplan-Meier curve of 90-day survival of the patients with and without AKI after the burn 

surgery. The green solid line indicates the group with no AKI and RDW ≤ 12.9 which had the best 

survival probability among the other groups. AKI, acute kidney injury; RDW, red cell distribution 

width.
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1.4 DISCUSSION

The present study demonstrates that age, DM, ASA PS III & IV, TBSA burned, RDW, 

prothrombin time, and creatinine were independent risk factors for mortality in patients after burn 

surgery. Especially, the novel finding of the present study is that RDW was considered significant 

predictor of mortality in patients after burn surgery. Interestingly, as with the survival analysis based on 

the subgroups of AKI and RDW, patients with AKI and RDW > 12.9 had the lowest survival rate on 

day 90. Also, high RDW group was associated with 1.24 higher risk of mortality than the low RDW 

group.

Burn injury involves with intricate mechanisms of pathophysiology which makes the 

management of these patients challenging at times.49 One of these mechanisms include microvascular 

dysfunction which leads to immunosuppressed state which is susceptible to multiple organ failure and 

mortality.50 Many different types of blood cells are involved in this series of burn-induced systemic 

inflammatory reaction. The prognostic value of blood parameters of CBC such as NLR, MLR, and PLR 

in burn patients have been studied.11 Since NLR is considered a marker for inflammation, it is a novel 

marker for mortality in critically-ill patients.51 Non-survivors had significantly higher NLR and RDW 

compared to survivors in burn patients admitted to ICU.11 However, not all of our study results were in 

accordance with the previous reports since we evaluated the mortality after the burn surgery. Regarding 

SII, it is known to have a better prognostic results than NLR or PLR in colorectal cancer patients after 

the surgery.52 These inflammatory markers are composites of blood components that are standard, low-

cost measurements that are already used in our daily clinical practice and can be easily calculated. 

Recently, these markers are considered to be more specific than C-reactive protein or erythrocyte 

sedimentation rate.38 However, the present results in our study revealed that these factors may not be 

correlated with mortality after burn surgery.

Age, TBSA, DM, and prothrombin time, and creatinine are known to be risk factors for 

multiple organ failure and mortality after burn injury which adhere to our results.53-55 The evaluation of 
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TBSA burned is important during the initial management for estimating fluid requirements. TBSA 

burned is known to be one of the risk factors of mortality in burn injury since higher TBSA leads to 

poor prognosis.3 Age is another well-known risk factor of morality in burn patients.4 The underlying 

medical conditions of the elderly, the impaired response to infection, decreased ability to tolerate stress 

and physiological insult, and poor nutritional status may influence the adverse outcome of the old aged 

patients after burn injury.5-7 Another major risk factor that affects mortality in burn is the presence of 

inhalation injury. Inhalation injury is reported to be third most important factor in the prediction of 

mortality in burn patients.8 Burn injury with flames may accompany inhalation injury with different 

severity. Since inhalation injury is directly related to airway, the consequences of this injury may be 

fatal.9,10 Also, other studies claim survivors have longer hospital stay due to additional treatments.56

However, the present study results show that non-survivors had a shorter hospital stay which can be 

explained by the high mortality rate within 90 days.

RDW is used to evaluate the size variability of circulating RBCs and is routinely reported as 

a component of CBC. The size of the RBCs varies from 80 to 100fL in the blood in normal conditions. 

However, in certain conditions, RBCs are increased or decreased caused by ineffective RBC production, 

increased RBC destruction, or blood transfusion. Consequently, the changes of erythrocyte homeostasis 

eventually result in extensive RBC size heterogeneity, depicted as elevated RDW, which indicate 

pathologic conditions.57 Also, these pathologic conditions lead to alterations of osmolality which 

decrease the ability of RBCs to deform which also is reflected on the RDW level. The pathophysiology 

of the relationship between RDW and mortality is not clear, but the inflammation cytokines, 

microvascular alterations, and oxidative stress is thought to be related.58-60 The relationship of RDW 

with mortality in critically-ill patients has been reported in various clinical conditions. There is an 

association between RDW and mortality in pulmonary embolism patients.61,62 Also, increasing RDW 

levels have higher mortality rate in these patients.41,63 RDW was also an independent predictor of 

mortality in heart failure.64 In patients with sepsis, non-survivors have higher RDW values compared 

with survivors.58 Specifically, RDW is an independent predictor of mortality in patients with gram-

negative bacteremia.65 Also, RDW was predictive of mortality in trauma patients.66 In burn injury, RDW
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was significantly elevated in non-survivors during the first week of burn injury.11,67 RDW is also known 

to be an independent risk factor in prediction of acute respiratory distress syndrome after severe burn.42

In this study, RDW was a strong predictor of mortality after the surgery in burn patients. 

When the patients were divided into the groups based on the cutoff value of RDW, the higher 

RDW group significantly had older age; increased incidence of DM and inhalation injury; higher TBSA 

burned; decreased hemoglobin and albumin; and increased prothrombin time, creatinine, NLR, and SII. 

Also in postoperative clinical features, ICU stay was longer, and the incidence of postoperative AKI 

was higher in the higher RDW group. The 90-day mortality was 1.24-fold higher in high RDW group 

than low RDW group, as validated by the Cox proportional hazards model after adjustment.

AKI is devastating complication which eventually leads to increase in mortality in burn 

patients.18,68,69 Studies have demonstrated associations between AKI and RDW with their impact on 

mortality.21,22,70 Based on this fact, we have divided the patients into 4 subgroups according to the cutoff 

value of preoperative RDW and the presence of postoperative AKI. The cut-off value of RDW for 

mortality in our study was 12.9. The present study found that patients with AKI and RDW > 12.9 have 

the lowest survival rate which is one-fifth survival rate of the those with no AKI and RDW ≤ 12.9. This 

suggests that efforts to prevent the occurrence of postoperative AKI in burn patients with high RDW 

are necessary because the mortality rate is higher if AKI develops postoperatively in patients with a 

preoperative RDW > 12.9. Follow-up studies are needed to prove this. Though the underlying 

mechanism between RDW and AKI has not been elucidated, inflammatory reactions and oxidative 

stress of AKI are reflected by RDW values. Furthermore, in AKI, the renin-angiotensin system promotes 

the release of erythropoietin and lead to excessive erythropoiesis with increased heterogeneity of 

RBCs.71,72

However, there are some limitations that should be mentioned in our study. First, the nature of 

its retrospective design has resulted in inevitable missing or inaccurate data. All of the data were based 

on the electronic medical record which may cause bias with the recorder. Second, although this is a 

single-center analysis of the burn patients, perioperative clinical management in this eight-year study 
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might have changed over time. Thus, the participants were not representatives of the general population. 

Third, since only preoperative RDW value was analyzed for mortality at 90 days after surgery, the 

prediction ability of the RDW values with the mortality cannot be applied to different time points 

throughout the hospital stay. Lastly, this study did not investigate whether the high mortality predicted 

by high preoperative RDW is related to complications other than postoperative AKI. Therefore, it 

cannot be excluded that mortality related to other complications after surgery other than high 

preoperative RDW before surgery may be higher. All intraoperative data including volume management 

were not evaluated in this study. However, since the data of the present study were collected in the 

largest burn center in Asia, which performs standardized burn surgery, these effects on the present 

outcome may be scarce. Also, all intraoperative data including volume management were not evaluated 

in this study. These limitations should be taken into account for further studies.
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1.5 CONCLUSION

This study reveals that preoperative RDW could have the ability to predict 90-day mortality in 

patients after burn surgery. The 90-day mortality was 1.24-fold higher in high RDW group than low 

RDW group. Furthermore, in patients with high RDW prior to burn surgery, postoperative AKI 

increases the mortality rate further. Therefore, patients with high RDW before burn surgery should be 

aware of the development of postoperative AKI. The potential risk factors should be considered in the 

overall management and treatment of the burn patients after the surgery. 
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CHAPTER 2

Prediction of mortality after burn surgery 

using machine learning models
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2.1 INTRODUCTION

AI has been advanced to medical field including clinical practice of anesthesiology.28 Machine 

learning technique is one of the subordinate categories of AI which have advanced as a new trend that 

leads to a superior prediction ability compared with conventional models.29 Machine learning model 

has gained attention for the diagnostic performance which automatically build analytical models to 

predict postoperative mortality.73

Severe burn injuries yield to morbidity and mortality which results from consequences of 

systemic complications and multiple organ failure.74 Burn injury triggers systemic inflammatory 

response in the process of pathophysiology which can be detected by several inflammatory markers.75

Among the various inflammatory markers, indices of CBC are widely used laboratory tests for early 

detection of inflammation. RDW has been known to be related to mortality in cardiovascular diseases, 

respiratory diseases, hepatitis, and septic conditions.41,58,76-78 Associations between these inflammatory 

factors and mortality in burn patients after surgery are continuously being reported.11

In burn patients, efforts have been made to reveal the potential prediction ability of mortality 

using machine learning in various approaches.79,80 Thus, the study aim was to identify the machine 

learning models with the best diagnostic performance for predicting mortality in patients after burn 

surgery and to compare each machine learning models. Machine learning models including RF, AB, DT, 

SVM, and LGR were used in our analysis. This study may be a part for validating machine learning 

systems in order to adopt machine learning applications into clinical practice.
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2.2 METHODS

Study population and data collection 

This retrospective study was approved by the Institutional Review Board of the Ethical 

Committee of Hangang Sacred Heart Hospital, Hallym University, Seoul, Korea (No. 2018-057). Adult 

patients (≥ 18 years old) who underwent burn surgery under general anesthesia from January 2010 to 

February 2018 were included. Also, patients who were admitted to the intensive care unit with TBSA

burned ≥ 20% were included. We reviewed the electronic medical record to obtain the laboratory and 

clinical data. The primary outcome was 90-day mortality after burn surgery. The secondary outcome 

was the selection of the machine learning models which fit the best performance for the prediction of 

mortality in patients after burn surgery. 

The clinical features used for analysis include age, diabetes mellitus, hypertension, ASA PS, 

TBSA burned, inhalation injury, hemoglobin, RDW, platelet, prothrombin time, albumin, creatinine, 

NLR, PLR, MLR, and SII. SII is calculated by (neutrophil × platelet)/lymphocyte. The analysis was 

used with the clinical laboratory findings one day before the surgery. The included patients underwent 

surgery within 14 days after the burn injury. These features were used as risk factors to be analyzed in 

the univariate and multivariate logistic regression in Chapter 1. 

Anesthetic and surgical techniques 

All patients fasted for 8 hours prior to surgery. In the operating room, patients were monitored 

with blood pressure, electrocardiography, and pulse oximetry before the induction of general anesthesia. 

Anesthesia was induced with propofol (1.5-2 mg/kg) and rocuronium (0.6-0.8 mg/kg). Anesthesia was 

maintained at a fractional inspired oxygen concentration of 0.5 with nitrous oxide combined with 

sevoflurane (2.0-3.0 vol%) or desflurane (6.0-8.0 vol%). The tidal volume was set to 8-10 mL/kg of 

ideal body weight, and the respiratory rate was adjusted to maintain an end-tidal CO2 level of 30-35 

mmHg. During the surgery, volume status was managed using mean arterial blood pressure, heart rate, 

urine output, and blood loss when necessary. Types of burn surgeries included fasciotomy, cadaveric 
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skin graft, or split-thickness skin graft. 

Clinical feature selection and classification method using machine learning

Although many quantitative features can be extracted from medical datasets, these may be 

highly correlated with each other or simply considered as noise. Thus, it is important to reduce features 

to select a subset of specific features, enhance the performance, and minimize the computational cost. 

The feature selection using random forest regressor and the 20 repeated 10-fold stratified cross-

validations were performed to avoid overfitting in limited datasets (Figure 2.1).81 Among the clinical 

features, important features for predicting mortality in patients after burn surgery were selected using a 

random forest regressor in Python (Python Software Foundation, version 3.7.4) with the Scikit-learn 

package (https://github.com/scikit-learn/scikit-learn). A random forest classifier model was trained to 

use these important features to predict mortality.82 We evaluated using the ROC curve analysis and 

classifier accuracy to compare the predictive accuracy of prediction by machine learning algorithms 

including RF, AB, DT, SVM, and LGR. Statistical differences in the AUC according to each classifier 

were compared using a machine learning model with Delong’s test using open-source R software 

(version 3.5.1; R Foundation for Statistical Computing, Vienna, Austria). P-values <0.05 were 

considered statistically significant.
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Figure 2.1. 20 repeated 10-fold stratified cross-validation of training set and test set.
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Algorithms of each machine learning models

RF is an ensemble of many decision trees which are non-linear models on various sub-samples 

of the dataset and calculate averaging to improve the predictive accuracy and prevent over-fitting.82 The 

importance of each feature is computed from Scikit-learn package of Random Forest. It is also known 

as the Gini importance. 

G���� = ∑ ��(1 − ��) = 1 − ∑ ��
��

���
�
���

K is the total of class and P is the probability of each class.

The AB algorithms classifier is a meta estimator fitting a classifier on the original dataset and 

then fitting additional copies of the classifier on the same dataset but where the weights of incorrectly 

classified instances are adjusted such that subsequent classifiers focus more on difficult cases.83 It is 

also calculated as following: 
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DTs are a non-parametric supervised learning method for classification and regression. The 

goal of this method is to generate a model predicting a target value by learning simple decision rules 

inferred from the data features.84 A tree can be seen as a piecewise constant approximation. For 

classification outcome taking on values 0,1, …, K-1, for node,

��� =
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be the proportion of class k observations in node m. If m is a terminal node, predicted probability for 

this region is set to ���.

SVM constructs hyperplanes in a high or infinite dimensional space, which can be used for 

classification, regression or other tasks. Intuitively, a good separation is achieved by the hyperplane that 

has the maximum gap to the nearest training data points of any class, since in general the larger the 
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margin the lower the generalization error of the classifier.85,86 The primal problem can be equivalently 

formulated as: 

��������� = ����,�
1

2
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�� − (��∅(��) + �)| − �,

where we make use of the epsilon-insensitive loss, i.e. errors of less than are ignored. This is the form 

that is directly optimized by linear support vector regression (SVR).

LGR is a linear model for classification rather than regression. It quantifies the relationship 

between a dependent categorical outcome and one or more independent predictor variables. This 

implementation can fit binary, One-vs-Rest, or multinomial logistic regression with optional, ��, ��.87,88

As an optimization problem, binary class �� penalized logistic regression minimizes the following cost 

function:
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Similarly, �� regularized logistic regression solves the following optimization problem:
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2.3 RESULTS

Basic demographics and selected important clinical features

Among 731 patients, survivors were 533 and non-survivors were 198. The mean ages of the 

training dataset and the test dataset were 53.96 and 58.86, respectively. The basic demographic data of 

the included patients can be referred to the Table 1.1. As a result of the selection of important features 

using the random forest regressor, a total of 11 features were selected from the 16 features. The 11 

features included were age, ASA, TBSA burned, hemoglobin, RDW, platelet, prothrombin time, 

albumin, creatinine, PLR, and SII. Of these 11 features, the most significant predictors were TBSA 

(0.28447 ± 0.28447), RDW (0.10053 ± 0.10053), and age (0.08842 ± 0.08842) (Table 2.1). This is 

depicted as a histogram in Figure 2.2. 
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Table 2.1. Each feature importance of the variables associated with mortality after burn surgery.

Variables Feature importance 

TBSA burned 0.28447 ± 0.28447

RDW 0.10053 ± 0.10053

Age 0.08842 ± 0.08842

Creatinine 0.08194 ± 0.08194

Platelet 0.07586 ± 0.07586

PLR 0.07459 ± 0.07459

Prothrombin time 0.06747 ± 0.06747

ASA PS 0.06676 ± 0.06676

Albumin 0.05457 ± 0.05457

Hemoglobin 0.05401 ± 0.05401

SII 0.05139 ± 0.05139

TBSA, total body surface area; RDW, red cell distribution width; ASA PS, American Society of 

Anesthesiologists physical status; PLR, platelet to lymphocyte ratio; and SII, systematic immune-

inflammation index.
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Figure 2.2. The plot of feature importance using random forest regressor. This figure shows the 

importance of each covariates in the final model. TBSA burned, RDW, and age showed the highest 

feature importance in the machine learning models. TBSA, total body surface area; RDW, red cell 

distribution width; ASA PS, American Society of Anesthesiologists physical status; PLR, platelet to 

lymphocyte ratio; and SII, systematic immune-inflammation index. 

 



37

Diagnostic performance of each machine learning models 

Figure 2.3 shows the comparison of AUC among the different machine learning models. 

Random forest showed the highest AUC (0.922 ± 0.020, 95% CI 0.902-0.942) among the other models 

with sensitivity and specificity of 66.2% and 93.8%. The AUC of AB, DT, SVM, and LGR were 0.915 

± 0.032 (95% CI 0.883-0.947), 0.769 ± 0.063 (95% CI 0.705-0.833), 0.706 ± 0.123 (95% CI, 0.582-

0.829), and 0.917 ± 0.021 (95% CI 0.895-0.939), respectively. Table 2.2 shows AUC, sensitivity, 

specificity, positive predictive value (PPV), and negative predictive value (NPV) of each machine 

learning models. 
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Figure 2.3. ROC curve analysis was used to compare the AUC among the different machine learning 

models and logistic regression model. Random forest model showed the highest AUC (0.922) among

the other models. ROC, receiver operating characteristic; RF, random forest; AB, adaptive boosting; 

DT, decision tree; SVM, support vector machine; and LGR, logistic regression.
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Table 2.2. AUC, sensitivity, specificity, PPV, NPV of each machine learning models

Model AUC (95% CI) Sensitivity Specificity PPV NPV

RF 0.922 (0.902-0.942) 66.2% 93.8% 79.9% 88.2%

AB 0.915 (0.883-0.947) 69.2% 91.2% 74.5% 88.8%

DT 0.769 (0.705-0.833) 68.7% 85.2% 63.3% 88.0%

SVM 0.706 (0.582-0.829) 3.0% 99.0% 54.5% 73.3%

LGR 0.917 (0.895-0.939) 68.7% 92.7% 77.7% 88.8%

RF, random forest; AB, adaptive boosting; DT, decision tree; SVM, support vector machine; LGR, 

logistic regression; AUC, area under the receiver operating characteristic curve; PPV, positive predictive 

value; and NPV, negative predictive value.  
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Pairwise comparison of AUC among machine learning models

The pairwise comparisons of the AUC using DeLong’s test demonstrated that random forest 

(AUC = 0.922) showed no statistical difference with adaptive boosting (AUC = 0.915) (p=0.359) (Table

2.3). However, comparisons with random forest and decision tree (AUC = 0.769), support vector 

machine (AUC = 0.706), or logistic regression (AUC = 0.917) showed significant difference (p < 0.05). 
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Table 2.3. Pairwise comparisons of area under the receiver operating characteristic curve using 
DeLong’s test.

Model AUC 95% CI p-value 

RF 0.922 ± 0.020 0.902-0.942
0.359

AB 0.915 ± 0.032 0.883-0.947

RF 0.922 ± 0.020 0.902-0.942
<0.001

DT 0.769 ± 0.063 0.705-0.833

RF 0.922 ± 0.020 0.902-0.942
<0.001

SVM 0.706 ± 0.123 0.582-0.829

RF 0.922 ± 0.020 0.902-0.942
0.042

LGR 0.917 ± 0.021 0.895-0.939

RF, random forest; AB, adaptive boosting; DT, decision tree; SVM, support vector machine; LGR, 

logistic regression; AUC, area under the receiver operating characteristic curve; and CI, confidence 

interval. 
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2.4 DISCUSSION

In this study, we applied a machine learning approach to clinical features to compare the 

mortality prediction model in patients after burn surgery. The comparison of AUC among the different 

machine learning models revealed that RF showed the highest AUC (0.922) among the other models. 

Also, the pairwise comparisons of the AUC demonstrated that RF showed no statistical difference with 

AB. However, comparisons with RF and DT, SVM, or LGR showed significant difference. 

The present study demonstrated that the top significant predictors for mortality after burn 

surgery using machine learning were TBSA burned, RDW, and age. Among the clinical features that 

we have analyzed, TBSA burned constitutes almost 30% of the feature importance among a total of 11 

clinical features. Other clinical features of importance by order were RDW, age, creatinine, platelet, 

PLR, prothrombin time, ASA PS, albumin, hemoglobin, and SII with each less than 10%. TBSA is well 

known for its strong association with mortality in burn patients.89,90 Also, RDW showed one of high 

feature importance among the clinical features. This is a significant finding since age is a well-known 

major risk factor of mortality in burn patients. Clinical laboratory results such as creatinine, platelet 

count, prothrombin time, and PLR are significant risk factors in burn patients. This result is consistent 

with previous studies using classic logistic regression analysis.11,55 In this study initial 16 clinical 

features are analyzed with random forest regressor for the selection of 11 important features. Generally, 

the success of a machine learning algorithm depends on the feature selection and performance criteria 

for validation.80 Although many quantitative features can be extracted from medical datasets, these may 

be highly correlated with each other or simply considered as noise. Thus, it is important to reduce 

features to select a subset of specific features, enhance the performance, and minimize the 

computational cost.

Among the machine learning models, our study demonstrated that RF model showed the 

highest performance that can predict mortality in patients after burn surgery. Also, RF model was not 

significantly different from AB model. Despite the high AUC values in RF and AB, PPV and NPV were 

not accordingly high. Thus, it depends on the users of the machine learning models for the selection of 

which model to use in appropriate clinical situations. 
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Machine learning approaches are recently reported to have better predictive ability compared 

to the classic statistical analysis. In the model for predicting AKI, the performance of gradient boosting 

machine was superior to DT and RF.91 For machine learning techniques in burn research, burn injury 

and management can be recognized as patterns that can capture nonlinearities that is shown in 

independent features such as TBSA burned, age, or inhalation injury which is different from the

conventional statistical approaches.92 Another study about predicting mortality of burn patients was 

conducted using artificial neural network which included 15 clinical features including inhalation injury, 

TBSA burned, and admission period.93 To my knowledge, this study is the first attempt to evaluate the 

clinical features of the patients after burn surgery using machine learning technique with AUC as the 

performance metric.       

Some limitations should be mentioned. Firstly, since this is a single center study, the particular 

system characteristics may have contributed to the survival of the patients. Thus, the results could not 

be generally applied to general population. Secondly, the models use the baseline preoperative 

characteristics without the postoperative data. Although the dynamic model with sequential data may 

be superior, the present model in our study predicts mortality in a specific time point which may be 

significant. Thirdly, the additional data not included in our clinical features could have improved 

prediction. Further studies are needed with these additional data with common clinical features for 

clinical acceptance.
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2.5 CONCLUSION

This study demonstrated that the most significant predictors for mortality after burn surgery 

are TBSA, RDW, and age. Random forest showed the best performance for predicting mortality among 

other models. Also, the pairwise comparisons demonstrated that RF showed no statistical difference 

with AB. However, comparisons with RF and DT, SVM, or LGR showed significant difference. Further 

investigation on larger cohort may help support the validity of the machine learning models.
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GENERAL CONCLUSION

In this doctoral thesis, the author evaluated prediction ability of preoperative RDW as a 

prognostic factor of mortality in patients after burn surgery.   

The results demonstrate that preoperative RDW could have the ability to predict 90-day 

mortality in patients after burn surgery. The present study reveals that age, DM, ASA PS III & IV, TBSA 

burned, RDW, prothrombin time, and creatinine were independent risk factors for mortality in patients 

after burn surgery. Especially, the novel finding of the present study is that preoperative RDW was 

considered significant predictor of mortality in patients after burn surgery. Interestingly, as with the 

survival analysis based on the subgroups of AKI and RDW, patients with AKI and RDW > 12.9 had the 

lowest survival rate on day 90. Also, the 90-day mortality was 1.24-fold higher in high RDW group 

than low RDW group. Furthermore, in patients with high RDW prior to burn surgery, postoperative AKI 

increases the mortality rate further. Therefore, patients with high RDW before burn surgery should be 

aware of the development of postoperative AKI. Also, machine learning analysis show that the most 

significant predictors for mortality after burn surgery are TBSA, RDW, and age. The noteworthy finding 

is that RDW had higher clinical importance compared to age which is considered one of the critical risk 

factor of mortality in burn patients. Random forest showed the best performance for predicting mortality 

among other models. Also, the pairwise comparisons demonstrated that RF showed no statistical 

difference with AB. However, comparisons with RF and DT, SVM, or LGR showed significant 

difference. 

These results suggest that preoperative RDW could be a powerful clinical feature for predicting 

mortality in patients after burn surgery. The potential risk factors should be considered in the overall 

management and treatment of the burn patients after the surgery. Further investigation on larger cohort 

may help support the validity of the machine learning models.
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국문 초록

배경: 화상 손상은 거의 모든 장기 시스템에 영향을 미치고 사망을 초래할 수 있는 치명

적인 합병증을 유발할 수 있다. 임상적으로 생존률을 높이기 위해 사망률을 예측하는 것

의 중요성을 인정하고 있다. 최근에는 수술 후 사망률을 예측하는 분석 모델을 자동으로

구축하는 진단 성능으로 머신러닝 모델이 주목받고 있다. 환자의 수술 전 변수를 사용하

여 사망률을 예측하는 것은 화상 환자에게 최적의 관리를 제공하는 데 도움이 될 수 있

다. 이에 저자는 화상 수술 후 환자의 사망률을 예측하는 적혈구 크기 분포 등의 위험인

자를 평가하고 임상적 특징도 평가해 머신러닝 기법을 활용한 90일 사망률 예측 모델을

구축했다.

목적: 저자는 고전적 통계 방법과 머신러닝 기법을 사용하여 화상 수술 후 환자의 사망

률 예측에 대한 수술 전 위험 요인을 평가하였다.

방법: 진단 검사 소견과 환자의 기본적 특징을 포함한 수술 전 임상적 특징을 수집하였

다. 화상 수술 후 사망률에 대한 위험 인자는 단변량 및 다변량 로지스틱 회귀 분석을

사용하여 평가되었다. 또한, 수술 후 급성 신장 손상의 발생률을 평가하였고, 수술 전 적

혈구 크기 분포의 수신기 작동 특성 곡선 분석 (area under the receiver operating 
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characteristic curve analysis, AUC) 을 수행하였다. 90일 사망률은 화상 수술 후 생존율을

비교하기 위해 로그 순위 검정과 함께 Kaplan-Meier 생존 분석을 사용하여 분석하였다. 

컷오프 값에 의한 RDW 그룹의 사망률 위험비는 Cox 비례 위험 회귀를 사용하여 분석하

였다. 또한, 화상 수술 후 환자의 사망률을 예측하기 위한 임상적으로 중요한 특징을

random forest regressor 를 사용하여 선택하였다. 저자는 random forest, adaptive 

boosting, decision tree, linear support vector machine, logistic regression 과 같은 머신러

닝 알고리즘에 의한 예측의 정확도를 비교하기 위해 수신기 작동 특성 곡선 및 각 모델

의 정확도를 분석하였다. 

결과: 포함 및 제외 기준을 충족한 환자는 731명이었다. 화상 수술 후 환자의 90일 사망

률은 27.1%(198/731)였다. 다변량 로지스틱 회귀 분석 결과 수술 전 변수 중 연령  

[Odds ratio, (OR) 1.067; 95% Confidence interval (CI) 1.047-1.088], 당뇨 (OR 3.211; 95% CI 

1.288-8.000), 미국마취과학회 신체상태 (American Society of Anesthesiologists physical 

status, ASA PS) III & IV (OR 4.918; 95% CI 1.581-15.305), 화상총체표면적 (OR 1.095; 95% 

CI 1.078-1.113), 적혈구 크기 분포 (OR 1.679; 95% CI 1.378-2.046), 프로트롬빈 시간 (OR 

4.649; 95% CI 1.259-17.171) 및 크레아티닌 (OR 1.818; 95% CI 1.181-2.798) 은 사망에 대

한 독립적인 위험 인자로 간주되었다. 사망률을 분석하기 위해 Cox 비례 위험 회귀를 사

용하였으며, 다변수 조정 후의 위험비는 RDW > 12.9 군에서 1.238 (95% CI 1.138-1.347, p < 

0.001) 이었다. 또한, 수술 후 급성 신장 손상은 생존군보다 비생존군에서 더 발생하였다
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(88, 44.4% vs. 30, 5.6%, p < 0.001). 머신러닝 모델은 16개의 임상적 특징 중 random 

forest regressor를 이용하여 총 11개의 임상 특징을 선택하였다. 포함된 11가지 기능은

연령, ASA PS, 화상총체표면적, 헤모글로빈, 적혈구 크기 분포, 혈소판, 프로트롬빈 시간, 

알부민, 크레아티닌, 혈소판-림프구 비율 및 전신 면역 감염 지수였다. 이 11가지 임상

특징 중 가장 중요한 예측 변수는 화상총체표면적 (0.28447 ± 0.28447), 적혈구 크기 분

포 (0.10053 ± 0.10053) 및 나이 (0.08842 ± 0.08842) 이었다. Random forest는 민감도와

특이도가 각각 66.2%, 93.8%로 다른 모델 중 가장 높은 AUC (0.922 ± 0.020, 95% CI 

0.902-0.942)를 보였다. DeLong 테스트를 사용한 AUC의 비교는 random forest 가 (AUC 

= 0.922)가 adaptive boosting (AUC = 0.915)과 통계적 차이를 보이지 않았다.

결론: 이 연구는 수술 전 적혈구 크기 분포가 화상 수술 후 환자의 90일 사망률을 예측

하는 능력이 있음을 보여준다. 또한, 화상 수술 전 적혈구 크기 분포가 높은 환자에서 수

술 후 급성 신장 손상은 사망률을 더욱 증가시킨다. 따라서 화상 수술 전 높은 적혈구

크기 분포를 가진 환자는 수술 후 급성 신장 손상의 발달을 인지해야 한다. 또한, 머신러

닝 분석을 통하여 화상 수술 후 사망률에 대한 가장 중요한 예측 인자가 화상총체표면적, 

적혈구 크기 분포 및 나이라는 것을 입증했다. 여러 모델 중에서 random forest는 다른

모델 중에서 사망률을 예측하는 데 가장 좋은 성능을 보였다.
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