KLI

Multiple electrocardiogram generator with single-lead electrocardiogram

Metadata Downloads
Abstract
Background and objective: Electrocardiogram (ECG) is measured in various ways. The three main ECG measurement methods include resting ECG, Holter monitoring, and treadmill method. In standard ECG measurement methods, multiple electrodes are attached to the limb and chest. Limb and chest leads measure the frontal and sagittal planes of the heart, respectively. In this case, ECG signals are measured briefly up to 10 seconds. To measure ECG signals based on a single lead, wearable devices have been developed that could measure long-term ECG signals daily. ECG signals are vectors in the heart, which is a three-dimensional structure. Therefore, a single-lead measurement lacks detailed information. The objective of this study was to synthesize multiple ECGs from a single-lead ECG using a generative adversarial network (GAN).

Methods: We trained our model with two independent datasets and one combined dataset. For experiment 1, the PTB-XL dataset was used as the training set, and the China dataset was used as the test set. For experiment 2, the China dataset was used as the training set, and the PTB-XL was used as the test set. Optimized GAN models were obtained for each experiment and evaluated.

Results: The Fréchet distance (FD) score and mean squared error (MSE) were used for evaluation. The FD and MSE scores for experiments 1 and 2 were 7.237 and 0.024, and 8.055 and 0.011, respectively.

Conclusion: We proposed a method to overcome the limitations of modern ECG measurement methods. Low FD and MSE scores not only indicate the possibility but also the similarity between synthesized ECG and reference ECG when compared in ECG paper format. This indicates that the proposed method can be applied to wearable devices that measure single-lead ECG.
Author(s)
Hyo-Chang SeoGi-Won YoonSegyeong JooGi-Byoung Nam
Issued Date
2022
Type
Article
Keyword
Deep learningElectrocardiogramGenerative adversarial networksWearable device
DOI
10.1016/j.cmpb.2022.106858
URI
https://oak.ulsan.ac.kr/handle/2021.oak/13803
Publisher
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
Language
한국어
ISSN
0169-2607
Citation Volume
221
Citation Start Page
106858
Appears in Collections:
Medicine > Nursing
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.