KLI

MLM-based typographical error correction of unstructured medical texts for named entity recognition

Metadata Downloads
Abstract
Background
Unstructured text in medical records, such as Electronic Health Records, contain an enormous amount of valuable information for research; however, it is difficult to extract and structure important information because of frequent typographical errors. Therefore, improving the quality of data with errors for text analysis is an essential task. To date, few prior studies have been conducted addressing this. Here, we propose a new methodology for extracting important information from unstructured medical texts by overcoming the typographical problem in surgical pathology records related to lung cancer.

Methods
We propose a typo correction model that considers context, based on the Masked Language Model, to solve the problem of typographical errors in real-world medical data. In addition, a word dictionary was used for the typo correction model based on PubMed abstracts. After refining the data through typo correction, fine tuning was performed on pre-trained BERT model. Next, deep learning-based Named Entity Recognition (NER) was performed. By solving the quality problem of medical data, we sought to improve the accuracy of information extraction in unstructured text data.

Results
We compared the performance of the proposed typo correction model based on contextual information with an existing SymSpell model. We confirmed that our proposed model outperformed the existing model in a typographical correction task. The F1-score of the model improved by approximately 5% and 9% when compared with the model without contextual information in the NCBI-disease and surgical pathology record datasets, respectively. In addition, the F1-score of NER after typo correction increased by 2% in the NCBI-disease dataset. There was a significant performance difference of approximately 25% between the before and after typo correction in the Surgical pathology record dataset. This confirmed that typos influenced the information extraction of the unstructured text.

Conclusion
We verified that typographical errors in unstructured text negatively affect the performance of natural language processing tasks. The proposed method of a typo correction model outperformed the existing SymSpell model. This study shows that the proposed model is robust and can be applied in real-world environments by focusing on the typos that cause difficulties in analyzing unstructured medical text.
Author(s)
Eun Byul LeeGo Eun HeoChang Min ChoiMin Song
Issued Date
2022
Type
Article
Keyword
BioinformaticsNamed entity recognitionLanguage modelArtifcial neural network
DOI
10.1186/s12859-022-05035-9
URI
https://oak.ulsan.ac.kr/handle/2021.oak/14558
Publisher
BMC BIOINFORMATICS
Language
영어
ISSN
1471-2105
Citation Volume
23
Citation Number
1
Citation Start Page
1
Citation End Page
16
Appears in Collections:
Medicine > Nursing
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.