Mammographically occult breast cancers detected with AI-based diagnosis supporting software: clinical and histopathologic characteristics
- Abstract
- Background: To demonstrate the value of an artificial intelligence (AI) software in the detection of mammographically occult breast cancers and to determine the clinicopathologic patterns of the cancers additionally detected using the AI software.
Methods: By retrospectively reviewing our institutional database (January 2017-September 2019), we identified women with mammographically occult breast cancers and analyzed their mammography with an AI software that provided a malignancy score (range 0-100; > 10 considered as positive). The hot spots in the AI report were compared with the US and MRI findings to determine if the cancers were correctly marked by the AI software. The clinicopathologic characteristics of the AI-detected cancers were analyzed and compared with those of undetected cancers.
Results: Among the 1890 breast cancers, 6.8% (128/1890) were mammographically occult, among which 38.3% (49/128) had positive results in the AI analysis. Of them, 81.6% (40/49) were correctly marked by the AI software and determined as "AI-detected cancers." As such, 31.3% (40/128) of mammographically occult breast cancers could be identified by the AI software. Of the AI-detected cancers, 97.5% were found in heterogeneously or extremely dense breasts, 52.5% were asymptomatic, 86.5% were invasive, and 29.7% had axillary lymph node metastasis. Compared with undetected cancers, the AI-detected cancers were more likely to be found in younger patients (p < 0.001), undergo neoadjuvant chemotherapy as well as mastectomy rather than breast-conserving operation (both p < 0.001), and accompany axillary lymph node metastasis (p = 0.003).
Conclusions: AI conferred an added value in the detection of mammographically occult breast cancers.
- Author(s)
- Hee Jeong Kim; Hak Hee Kim; Ki Hwan Kim; Woo Jung Choi; Eun Young Chae; Hee Jung Shin; Joo Hee Cha; Woo Hyun Shim
- Issued Date
- 2022
- Type
- Article
- Keyword
- Artificial intelligence; Breast neoplasms; Mammography
- DOI
- 10.1186/s13244-022-01183-x
- URI
- https://oak.ulsan.ac.kr/handle/2021.oak/14927
- Publisher
- Insights into Imaging
- Language
- 영어
- ISSN
- 1869-4101
- Citation Volume
- 13
- Citation Number
- 1
- Citation Start Page
- 1
- Citation End Page
- 11
-
Appears in Collections:
- Medicine > Nursing
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.