KLI

Deep Learning-Based Glaucoma Screening Using Regional RNFL Thickness in Fundus Photography

Metadata Downloads
Abstract
Since glaucoma is a progressive and irreversible optic neuropathy, accurate screening and/or early diagnosis is critical in preventing permanent vision loss. Recently, optical coherence tomography (OCT) has become an accurate diagnostic tool to observe and extract the thickness of the retinal nerve fiber layer (RNFL), which closely reflects the nerve damage caused by glaucoma. However, OCT is less accessible than fundus photography due to higher cost and expertise required for operation. Though widely used, fundus photography is effective for early glaucoma detection only when used by experts with extensive training. Here, we introduce a deep learning-based approach to predict the RNFL thickness around optic disc regions in fundus photography for glaucoma screening. The proposed deep learning model is based on a convolutional neural network (CNN) and utilizes images taken with fundus photography and with RNFL thickness measured with OCT for model training and validation. Using a dataset acquired from normal tension glaucoma (NTG) patients, the trained model can estimate RNFL thicknesses in 12 optic disc regions from fundus photos. Using intuitive thickness labels to identify localized damage of the optic nerve head and then estimating regional RNFL thicknesses from fundus images, we determine that screening for glaucoma could achieve 92% sensitivity and 86.9% specificity. Receiver operating characteristic (ROC) analysis results for specificity of 80% demonstrate that use of the localized mean over superior and inferior regions reaches 90.7% sensitivity, whereas 71.2% sensitivity is reached using the global RNFL thicknesses for specificity at 80%. This demonstrates that the new approach of using regional RNFL thicknesses in fundus images holds good promise as a potential screening technique for early stage of glaucoma.
Author(s)
Hyunmo YangYujin AhnSanzhar AskarulyJoon S YouSang Woo KimWoonggyu Jung
Issued Date
2022
Type
Article
Keyword
color fundus photographsconvolutional neural networksglaucomanormal-tension glaucomaoptical coherence tomographyretinal nerve fiber layerscreening
DOI
10.3390/diagnostics12112894
URI
https://oak.ulsan.ac.kr/handle/2021.oak/15232
Publisher
Diagnostics
Language
영어
ISSN
2075-4418
Citation Volume
12
Citation Number
11
Citation Start Page
2894
Citation End Page
2984
Appears in Collections:
Medicine > Nursing
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.