KLI

Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models

Metadata Downloads
Abstract
Severe burns may lead to a series of pathophysiological processes that result in death. Machine learning models that demonstrate prognostic performance can be used to build analytical models to predict postoperative mortality. This study aimed to identify machine learning models with the best diagnostic performance for predicting mortality in critically ill burn patients after burn surgery, and then compare them. Clinically important features for predicting mortality in patients after burn surgery were selected using a random forest (RF) regressor. The area under the receiver operating characteristic curve (AUC) and classifier accuracy were evaluated to compare the predictive accuracy of different machine learning algorithms, including RF, adaptive boosting, decision tree, linear support vector machine, and logistic regression. A total of 731 patients met the inclusion and exclusion criteria. The 90-day mortality of the critically ill burn patients after burn surgery was 27.1% (198/731). RF showed the highest AUC (0.922, 95% confidence interval = 0.902-0.942) among the models, with sensitivity and specificity of 66.2% and 93.8%, respectively. The most significant predictors for mortality after burn surgery as per machine learning models were total body surface area burned, red cell distribution width, and age. The RF algorithm showed the best performance for predicting mortality.
Author(s)
Ji Hyun ParkYongwon ChoDonghyeok ShinSeong-Soo Choi
Issued Date
2022
Type
Article
Keyword
burnmachine learningmortality
DOI
10.3390/jpm12081293
URI
https://oak.ulsan.ac.kr/handle/2021.oak/15245
Publisher
Journal of Personalized Medicine
Language
영어
ISSN
2075-4426
Citation Volume
12
Citation Number
8
Citation Start Page
1
Citation End Page
11
Appears in Collections:
Medicine > Nursing
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.