KLI

Vascular Aging Estimation Based on Artificial Neural Network Using Photoplethysmogram Waveform Decomposition: Retrospective Cohort Study

Metadata Downloads
Abstract
Background: For the noninvasive assessment of arterial stiffness, a well-known indicator of arterial aging, various features based on the photoplethysmogram and regression methods have been proposed. However, whether because of the existing characteristics not accurately reflecting the characteristics of the incident and reflected waveforms of the photoplethysmogram or because of the lack of expressive power of the regression model, a reliable arterial stiffness assessment technique based on a single photoplethysmogram has not yet been proposed.

Objective: The purpose of this study is to discover highly correlated features from the incident and reflected waves decomposed from a photoplethysmogram waveform and to develop an artificial neural network-based regression model for the assessment of vascular aging using newly derived features.

Methods: We obtained photoplethysmograms from 757 participants. All recorded photoplethysmograms were segmented for each beat, and each waveform was decomposed into incident and reflected waves by the Gaussian mixture model. The 26 basic features and 52 combined features were defined from the morphological characteristics of the incident and reflected waves. The regression model of the artificial neural network was developed using the defined features.

Results: In correlation analysis, the features from the amplitude of the reflected wave and the skewness of the photoplethysmogram showed a relatively strong correlation with the participant's real age. In the estimation of real age, the artificial neural network model showed 10.0 years of root mean square error. Its estimated age and real age had a strong correlation of 0.63 (P<.001).

Conclusions: This study proved that the features defined from the reflected wave and skewness of the photoplethysmogram are useful to assess vascular aging. Moreover, the regression model of artificial neural network using these features shows the feasibility for the estimation of vascular aging.
Author(s)
Junyung ParkHangsik Shin
Issued Date
2022
Type
Article
Keyword
Artificial neural networkCardiovascular riskMachine learningNeural networkPhotoplethysmogramVascular aging
DOI
10.2196/33439
URI
https://oak.ulsan.ac.kr/handle/2021.oak/15579
Publisher
JMIR Medical Informatics
Language
영어
ISSN
2291-9694
Citation Volume
10
Citation Number
3
Citation Start Page
1
Citation End Page
17
Appears in Collections:
Engineering > Medical Engineering
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.