KLI

Localization-adjusted diagnostic performance and assistance effect of a computer-aided detection system for pneumothorax and consolidation

Metadata Downloads
Abstract
While many deep-learning-based computer-aided detection systems (CAD) have been developed and commercialized for abnormality detection in chest radiographs (CXR), their ability to localize a target abnormality is rarely reported. Localization accuracy is important in terms of model interpretability, which is crucial in clinical settings. Moreover, diagnostic performances are likely to vary depending on thresholds which define an accurate localization. In a multi-center, stand-alone clinical trial using temporal and external validation datasets of 1,050 CXRs, we evaluated localization accuracy, localization-adjusted discrimination, and calibration of a commercially available deep-learning-based CAD for detecting consolidation and pneumothorax. The CAD achieved image-level AUROC (95% CI) of 0.960 (0.945, 0.975), sensitivity of 0.933 (0.899, 0.959), specificity of 0.948 (0.930, 0.963), dice of 0.691 (0.664, 0.718), moderate calibration for consolidation, and image-level AUROC of 0.978 (0.965, 0.991), sensitivity of 0.956 (0.923, 0.978), specificity of 0.996 (0.989, 0.999), dice of 0.798 (0.770, 0.826), moderate calibration for pneumothorax. Diagnostic performances varied substantially when localization accuracy was accounted for but remained high at the minimum threshold of clinical relevance. In a separate trial for diagnostic impact using 461 CXRs, the causal effect of the CAD assistance on clinicians’ diagnostic performances was estimated. After adjusting for age, sex, dataset, and abnormality type, the CAD improved clinicians’ diagnostic performances on average (OR [95% CI] = 1.73 [1.30, 2.32]; p < 0.001), although the effects varied substantially by clinical backgrounds. The CAD was found to have high stand-alone diagnostic performances and may beneficially impact clinicians’ diagnostic performances when used in clinical settings.
Author(s)
Sun Yeop LeeSangwoo HaMin Gyeong JeonHao LiHyunju ChoiHwa Pyung KimYe Ra ChoiHoseok IYeon Joo JeongYoon Ha ParkHyemin AhnSang Hyup HongHyun Jung KooChoong Wook LeeMin Jae KimYeon Joo KimKyung Won KimJong Mun Choi
Issued Date
2022
Type
Article
Keyword
Computer applications to medicineMedical informatics
DOI
10.1038/s41746-022-00658-x
URI
https://oak.ulsan.ac.kr/handle/2021.oak/15677
Publisher
NPJ DIGITAL MEDICINE
Language
한국어
ISSN
2398-6352
Citation Volume
5
Citation Number
1
Citation Start Page
1
Citation End Page
11
Appears in Collections:
Medicine > Nursing
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.