GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype
- Abstract
- Motivation: Asthma is a heterogeneous disease where various subtypes are established and molecular biomarkers of the subtypes are yet to be discovered. Recent availability of multi-omics data paved a way to discover molecular biomarkers for the subtypes. However, multi-omics biomarker discovery is challenging because of the complex interplay between different omics layers.
Results: We propose a deep attention model named Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network (GOAT) for identifying molecular biomarkers for eosinophilic asthma subtypes with multi-omics data. GOAT identifies genes that discriminate subtypes using a graph neural network by modeling complex interactions among genes as the attention mechanism in the deep learning model. In experiments with multi-omics profiles of the COREA (Cohort for Reality and Evolution of Adult Asthma in Korea) asthma cohort of 300 patients, GOAT outperforms existing models and suggests interpretable biological mechanisms underlying asthma subtypes. Importantly, GOAT identified genes that are distinct only in terms of relationship with other genes through attention. To better understand the role of biomarkers, we further investigated two transcription factors, CTNNB1 and JUN, captured by GOAT. We were successful in showing the role of the transcription factors in eosinophilic asthma pathophysiology in a network propagation and transcriptional network analysis, which were not distinct in terms of gene expression level differences.
Availability and implementation: Source code is available https://github.com/DabinJeong/Multi-omics_biomarker. The preprocessed data underlying this article is accessible in data folder of the github repository. Raw data are available in Multi-Omics Platform at http://203.252.206.90:5566/, and it can be accessible when requested.
- Issued Date
- 2023
Dabin Jeong
Bonil Koo
Minsik Oh
Tae-Bum Kim
Sun Kim
- Type
- Article
- Keyword
- Computer science; Mathematics; Physical sciences; Technology
- DOI
- 10.1093/bioinformatics/btad582
- URI
- https://oak.ulsan.ac.kr/handle/2021.oak/16238
- Publisher
- BIOINFORMATICS
- Language
- 한국어
- ISSN
- 1367-4803
- Citation Volume
- 39
- Citation Number
- 10
- Citation Start Page
- 1
- Citation End Page
- 10
-
Appears in Collections:
- Medicine > Nursing
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.