KLI

AR 전신 상호작용을 위한 이종 센서 간 좌표계 보정 기법

Metadata Downloads
Alternative Title
Heterogeneous Sensor Coordinate System Calibration Technique for AR Whole Body Interaction
Abstract
꾸준히 증가하는 노인성 질환 환자 대상으로 몰입형 디지털 콘텐츠를 이용한 쉽고 정확한 전신 재활 상호작용 기술이 필요하며, 본 연구에서는 이를 위해 홀로렌즈와 키넥트를 사용한 전신 상호작용 기술을 소개한다. 이를 위해 메쉬 특징점 기반 변환, AR 마커 기반 변환, 신체 인식 기반 변환 방법의 3가지 좌표 변환 방식을 제안한다. 메쉬 특징점 기반 변환은 공간 메쉬에 3개의 특징점을 지정하고 변환 행렬을 이용하여 좌표계를 일치시킨다. 이 방법은 수작업이 필요하여 사용성이 떨어지지만 정확도가 8.5mm로 상대적으로 높다. AR 마커 기반 방식은 홀로렌즈s와 키넥트가 동시에 인식하는 AR, QR마커를 사용하여 평균오차 11.2mm로 준수한 정확도를 달성했다. 신체 인식 기반 변환 방법은 두 기기가 동시에 인식하는 머리 혹은 HMD위치와 양 손 혹은 컨트롤러 위치를 이용하여 좌표계를 일치시킨다. 이 방법은 정확도가 떨어지지만 부가적인 도구나 수작업이 필요 없으므로 사용성이 좋다. 또한 후처리 기술로 RANSAC을 적용함으로써 오차를 10% 이상 줄였다. 이러한 3가지 방식은 콘텐츠가 필요한 사용 편의성과 정확도에 따라서 선택적으로 적용할 수 있다. 본 연구에서는 이 기술을 이용해서 ‘썬더펀치’와 재활 치료 콘텐츠에 적용하여 검증하였다.

A simple and accurate whole body rehabilitation interaction technology using immersive digital content is needed for elderly patients with steadily increasing age-related diseases. In this study, we introduce whole-body interaction technology using HoloLens and Kinect for this purpose. To achieve this, we propose three coordinate transformation methods: mesh feature point-based transformation, AR marker-based transformation, and body recognition-based transformation. The mesh feature point-based transformation aligns the coordinate system by designating three feature points on the spatial mesh and using a transform matrix. This method requires manual work and has lower usability, but has relatively high accuracy of 8.5mm. The AR marker-based method uses AR and QR markers recognized by HoloLens and Kinect simultaneously to achieve a compliant accuracy of 11.2mm. The body recognition-based transformation aligns the coordinate system by using the position of the head or HMD recognized by both devices and the position of both hands or controllers. This method has lower accuracy, but does not require additional tools or manual work, making it more user-friendly. Additionally, we reduced the error by more than 10% using RANSAC as a post-processing technique. These three methods can be selectively applied depending on the usability and accuracy required for the content. In this study, we validated this technology by applying it to the “Thunder Punch” and rehabilitation therapy content.
Author(s)
Hangkee KimDaehwan KimDongchun LeeKisuk LeeNakhoon Baek
Issued Date
2023
Type
Article
Keyword
증강현실재활콘텐츠전신상호작용ARRehabilitationContentsWhole-BodyInteraction
DOI
10.3745/KTSDE.2023.12.7.315
URI
https://oak.ulsan.ac.kr/handle/2021.oak/16366
Publisher
정보처리학회논문지. 소프트웨어 및 데이터 공학
Language
한국어
ISSN
2287-5905
Citation Volume
12
Citation Number
7
Citation Start Page
315
Citation End Page
324
Appears in Collections:
Engineering > IT Convergence
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.