Bone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels
- Abstract
- Objective: To develop a deep-learning-based bone age prediction model optimized for Korean children and adolescents and evaluate its feasibility by comparing it with a Greulich-Pyle-based deep-learning model.
Materials and methods: A convolutional neural network was trained to predict age according to the bone development shown on a hand radiograph (bone age) using 21036 hand radiographs of Korean children and adolescents without known bone development-affecting diseases/conditions obtained between 1998 and 2019 (median age [interquartile range {IQR}], 9 [7-12] years; male:female, 11794:9242) and their chronological ages as labels (Korean model). We constructed 2 separate external datasets consisting of Korean children and adolescents with healthy bone development (Institution 1: n = 343; median age [IQR], 10 [4-15] years; male: female, 183:160; Institution 2: n = 321; median age [IQR], 9 [5-14] years; male: female, 164:157) to test the model performance. The mean absolute error (MAE), root mean square error (RMSE), and proportions of bone age predictions within 6, 12, 18, and 24 months of the reference age (chronological age) were compared between the Korean model and a commercial model (VUNO Med-BoneAge version 1.1; VUNO) trained with Greulich-Pyle-based age as the label (GP-based model).
Results: Compared with the GP-based model, the Korean model showed a lower RMSE (11.2 vs. 13.8 months; P = 0.004) and MAE (8.2 vs. 10.5 months; P = 0.002), a higher proportion of bone age predictions within 18 months of chronological age (88.3% vs. 82.2%; P = 0.031) for Institution 1, and a lower MAE (9.5 vs. 11.0 months; P = 0.022) and higher proportion of bone age predictions within 6 months (44.5% vs. 36.4%; P = 0.044) for Institution 2.
Conclusion: The Korean model trained using the chronological ages of Korean children and adolescents without known bone development-affecting diseases/conditions as labels performed better in bone age assessment than the GP-based model in the Korean pediatric population. Further validation is required to confirm its accuracy.
- Issued Date
- 2023
Pyeong Hwa Kim
Hee Mang Yoon
Jeong Rye Kim
Jae-Yeon Hwang
Jin-Ho Choi
Jisun Hwang
Jaewon Lee
Jinkyeong Sung
Kyu-Hwan Jung
Byeonguk Bae
Ah Young Jung
Young Ah Cho
Woo Hyun Shim
Boram Bak
Jin Seong Lee
- Type
- Article
- Keyword
- Bone age; Convolutional neural network; Deep-learning; Pediatrics
- DOI
- 10.3348/kjr.2023.0092
- URI
- https://oak.ulsan.ac.kr/handle/2021.oak/16450
- Publisher
- KOREAN JOURNAL OF RADIOLOGY
- Language
- 영어
- ISSN
- 1229-6929
- Citation Volume
- 24
- Citation Number
- 11
- Citation Start Page
- 1151
- Citation End Page
- 1163
-
Appears in Collections:
- Medicine > Nursing
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.