Safety and efficacy of a novel anti-CD19 chimeric antigen receptor T cell product targeting a membrane-proximal domain of CD19 with fast on- and off-rates against non-Hodgkin lymphoma: a first-in-human study
- Abstract
- Background
Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy.
Methods
We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL.
Results
Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia.
Conclusions
We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL.
Trial registration
NCT05338931; Date: 2022–04-01.
- Issued Date
- 2023
Yunlin Zhang
Ruchi P. Patel
Ki Hyun Kim
Hyungwoo Cho
Jae-Cheol Jo
Seong Hyun Jeong
Sung Yong Oh
Yoon Seok Choi
Sung Hyun Kim
Ji Hyun Lee
Mathew Angelos
Puneeth Guruprasad
Ivan Cohen
Ositadimma Ugwuanyi
Yong Gu Lee
Raymone Pajarillo
Jong Hyun Cho
Alberto Carturan
Luca Paruzzo
Guido Ghilardi
Michael Wang
Soohwan Kim
Sung-Min Kim
Hyun-Jong Lee
Ji-Ho Park
Leiguang Cui
Tae Bum Lee
In-Sik Hwang
Young-Ha Lee
Yong-Jun Lee
Patrizia Porazzi
Dongfang Liu
Yoon Lee
Jong-Hoon Kim
Jong-Seo Lee
Dok Hyun Yoon
Junho Chung
Marco Ruella
- Type
- Article
- Keyword
- CAR T cells; CD19; CD19 mutations; Epitope masking; Fast on- and off-rate; Leukemia; Low avidity; Lymphoma; Membrane-proximal epitope; Resistance
- DOI
- 10.1186/s12943-023-01886-9
- URI
- https://oak.ulsan.ac.kr/handle/2021.oak/16615
- Publisher
- Molecular Cancer
- Language
- 영어
- ISSN
- 1476-4598
- Citation Volume
- 22
- Citation Number
- 1
- Citation Start Page
- 1
- Citation End Page
- 23
-
Appears in Collections:
- Medicine > Nursing
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.