A Model-Free-Based Control Method for Robot Manipulators: Achieving Prescribed Performance and Ensuring Fixed Time Stability
- Abstract
- This paper addresses three significant challenges in controlling robot manipulators: improving response time, minimizing steady-state errors and chattering, and enhancing controller robustness. It also focuses on eliminating the need for computing the robot’s dynamic model and unknown functions, as well as achieving global fixed-time convergence and the prescribed performance for the control system. To achieve these objectives, a fixed-time sliding mode function is designed, which uses transformation errors to achieve prescribed control performance, with adjustments made to the maximum overshoot, convergence time, and tracking errors to keep them within predefined bounds. Additionally, a radial basis function neural network (RBFNN) is used to eliminate the need for knowledge of the robot’s dynamical properties and uncertain terms, which also reduces negative chattering. Finally, a novel fixed-time terminal sliding mode control (TSMC) algorithm is developed for robot manipulators without using their dynamical model. The fixed-time stability of the control system is thoroughly demonstrated by applying Lyapunov criteria and conducting simulations on a robot manipulator to showcase its effectiveness.
- Issued Date
- 2023
Anh Tuan Vo
Thanh Nguyen Truong
Hee-Jun Kang
- Type
- Article
- Keyword
- control of robots; neural networks; fixed-time control; prescribed performance control
- DOI
- 10.3390/app13158939
- URI
- https://oak.ulsan.ac.kr/handle/2021.oak/17227
- Publisher
- APPLIED SCIENCES-BASEL
- Language
- 영어
- ISSN
- 2076-3417
- Citation Volume
- 13
- Citation Number
- 15
- Citation Start Page
- 1
- Citation End Page
- 22
-
Appears in Collections:
- Engineering > Engineering
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.