Modulating the synergy of Pd@Pt core-shell nanodendrites for boosting methanol electrooxidation kinetics
- Abstract
- The single-pot production of Pd@Pt core–shell structures are a promising approach as it offers large surface area, catalytic capability, and stability. In this work, we established a single-pot process to produce Pd@Pt core–shell nanodendrites with tunable composition, shape and size for optimal electrochemical activity. Pd@Pt nanodendrites with diverse compositions were synthesized by tuning the ratios of Pd and Pt sources in an aqueous environment using cetyltrimethylammonium chloride, which functioned as both the surfactant and the reducing agent at an elevated temperature (90 ℃). The synthesized Pd5@Pt5 nanodendrites showed exceptional electrochemical action toward the methanol oxidation reaction related with another compositional Pd@Pt nanodendrites and conventional Pt/C electrocatalysts. In addition, Pd5@Pt5 nanodendrites exhibited good CO tolerance owing to their surface features and the synergistic effect among Pt and Pd. Meanwhile, nanodendrites with a high-index facets and Pt-rich surface provided exceptional catalytic active sites. Compared with the conventional Pt/C electrocatalyst, the anodic peak current obtained by Pd5@Pt5 nanodendrites was 3.74 and 2.18 times higher in relations of mass and electrochemical active surface area-normalized current density, respectively. This approach offers an attractive strategy to design electrocatalysts with unique structures and outstanding catalytic performance and stability for electrochemical energy conversion.
- Author(s)
- Hyeon Jeong Kim; Cheol Joo Moon; Seokhee Lee; Jayaraman Theerthagiri; Jong Wook Hong; Myong Yong Choi; Young Wook Lee
- Issued Date
- 2023
- Type
- Article
- Keyword
- Core-shell nanostructure; Pd@Pt electrocatalysis; One-pot synthesis; Formation mecanism of nanodendrites; Methanol oxidation reaction
- DOI
- 10.1016/j.jmst.2023.04.042
- URI
- https://oak.ulsan.ac.kr/handle/2021.oak/17318
- Publisher
- JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
- Language
- 영어
- ISSN
- 1005-0302
- Citation Volume
- 165
- Citation Number
- 1
- Citation Start Page
- 153
- Citation End Page
- 160
-
Appears in Collections:
- Natural Science > Chemistry
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.