Advanced Functional Carbon Nitride by Implanting Semi-Isolated VO2 Active Sites for Photocatalytic H2 Production and Organic Pollutant Degradation
- Abstract
- It is critical to facilitate surface interaction for liquid-solid two-phase photocatalytic reactions. This study demonstrates more advanced, efficient, and rich molecular-level active sites to extend the performance of carbon nitride (CN). To achieve this, semi-isolated vanadium dioxide is obtained by controlling the growth of non-crystalline VO2 anchored into sixfold cavities of the CN lattice. As a proof-of-concept, the experimental and computational results solidly corroborate that this atomic-level design has potentially taken full advantage of two worlds. The photocatalyst comprises the highest dispersion of catalytic sites with the lowest aggregation, like single-atom catalysts. It also demonstrates accelerated charge transfer with the boosted electron-hole pairs, mimicking heterojunction photocatalysts. Density functional theory calculations show that single-site VO2 anchored into the sixfold cavities significantly elevates the Fermi level, compared with the typical heterojunction. The unique features of semi-isolated sites result in a high visible-light photocatalytic H2 production of 645 µmol h-1 g-1 with only 1 wt% Pt. They also represent an excellent photocatalytic degradation for rhodamine B as well as tetracycline, surpassing the activities obtained from many conventional heterojunctions. This study presents exciting opportunities for the design of new heterogeneous metal oxide for a variety of reactions.
- Author(s)
- Milad Jourshabani; Mahdieh Razi Asrami; Byeong-Kyu Lee
- Issued Date
- 2023
- Type
- Article
- Keyword
- carbon nitride; photocatalysts; semi-isolated sites; sixfold cavities; vanadium dioxide
- DOI
- 10.1002/smll.202300147
- URI
- https://oak.ulsan.ac.kr/handle/2021.oak/17363
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.