Deep Learning-Based Automatic Detection and Grading of Motion-Related Artifacts on Gadoxetic Acid-Enhanced Liver MRI
- Abstract
- Objectives: The aim of this study was to develop and validate a deep learning-based algorithm (DLA) for automatic detection and grading of motion-related artifacts on arterial phase liver magnetic resonance imaging (MRI).
Materials and methods: Multistep DLA for detection and grading of motion-related artifacts, based on the modified ResNet-101 and U-net, were trained using 336 arterial phase images of gadoxetic acid-enhanced liver MRI examinations obtained in 2017 (training dataset; mean age, 68.6 years [range, 18-95]; 254 men). Motion-related artifacts were evaluated in 4 different MRI slices using a 3-tier grading system. In the validation dataset, 313 images from the same institution obtained in 2018 (internal validation dataset; mean age, 67.2 years [range, 21-87]; 228 men) and 329 from 3 different institutions (external validation dataset; mean age, 64.0 years [range, 23-90]; 214 men) were included, and the per-slice and per-examination performances for the detection of motion-related artifacts were evaluated.
Results: The per-slice sensitivity and specificity of the DLA for detecting grade 3 motion-related artifacts were 91.5% (97/106) and 96.8% (1134/1172) in the internal validation dataset and 93.3% (265/284) and 91.6% (948/1035) in the external validation dataset. The per-examination sensitivity and specificity were 92.0% (23/25) and 99.7% (287/288) in the internal validation dataset and 90.0% (72/80) and 96.0% (239/249) in the external validation dataset, respectively. The processing time of the DLA for automatic grading of motion-related artifacts was from 4.11 to 4.22 seconds per MRI examination.
Conclusions: The DLA enabled automatic and instant detection and grading of motion-related artifacts on arterial phase gadoxetic acid-enhanced liver MRI.
- Issued Date
- 2023
Taeyong Park
Dong Wook Kim
Sang Hyun Choi
Seungwoo Khang
Jimi Huh
Seung Baek Hong
Tae Young Lee
Yousun Ko
Kyung Won Kim
Seung Soo Lee
- Type
- Article
- DOI
- 10.1097/RLI.0000000000000914
- URI
- https://oak.ulsan.ac.kr/handle/2021.oak/17480
- Publisher
- INVESTIGATIVE RADIOLOGY
- Language
- 영어
- ISSN
- 0020-9996
- Citation Volume
- 58
- Citation Number
- 2
- Citation Start Page
- 166
- Citation End Page
- 172
-
Appears in Collections:
- Medicine > Nursing
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.