KLI

Evaluation of fully automated commercial software for Agatston calcium scoring on non-ECG-gated low-dose chest CT with different slice thickness

Metadata Downloads
Abstract
Objectives: To evaluate commercial deep learning-based software for fully automated coronary artery calcium (CAC) scoring on non-electrocardiogram (ECG)-gated low-dose CT (LDCT) with different slice thicknesses compared with manual ECG-gated calcium-scoring CT (CSCT).

Methods: This retrospective study included 567 patients who underwent both LDCT and CSCT. All LDCT images were reconstructed with a 2.5-mm slice thickness (LDCT2.5-mm), and 453 LDCT scans were reconstructed with a 1.0-mm slice thickness (LDCT1.0-mm). Automated CAC scoring was performed on CSCT (CSCTauto), LDCT1.0-mm, and LDCT2.5-mm images. The reliability of CSCTauto, LDCT1.0-mm, and LDCT2.5-mm was compared with manual CSCT scoring (CSCTmanual) using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. Agreement, in CAC severity category, was analyzed using weighted kappa statistics. Diagnostic performance at various Agatston score cutoffs was also calculated.

Results: CSCTauto, LDCT1.0-mm, and LDCT2.5-mm demonstrated excellent agreement with CSCTmanual (ICC [95% confidence interval, CI]: 1.000 [1.000, 1.000], 0.937 [0.917, 0.952], and 0.955 [0.946, 0.963], respectively). The mean difference with 95% limits of agreement was lower with LDCT1.0-mm than with LDCT2.5-mm (19.94 [95% CI, -244.0, 283.9] vs. 45.26 [-248.2, 338.7]). Regarding CAC severity, LDCT1.0-mm achieved almost perfect agreement, and LDCT2.5-mm achieved substantial agreement (kappa [95% CI]: 0.809 [0.776, 0.838], 0.776 [0.740, 0.809], respectively). Diagnostic performance for detecting Agatston score ≥ 400 was also higher with LDCT1.0-mm than with LDCT2.5-mm (F1 score, 0.929 vs. 0.855).

Conclusions: Fully automated CAC-scoring software with both CSCT and LDCT yielded excellent reliability and agreement with CSCTmanual. LDCT1.0-mm yielded more accurate Agatston scoring than LDCT2.5-mm using fully automated commercial software.
Issued Date
2023
Hyun Woo Kang
Woo Jin Ahn
Ju Hyun Jeong
Young Joo Suh
Dong Hyun Yang
Hangseok Choi
Sung Ho Hwang
Hwan Seok Yong
Yu-Whan Oh
Eun-Young Kang
Cherry Kim
Type
Article
Keyword
Artificial intelligenceCalciumCoronary arteriesSoftwareTomographyX-ray computed
DOI
10.1007/s00330-022-09143-1
URI
https://oak.ulsan.ac.kr/handle/2021.oak/17532
Publisher
EUROPEAN RADIOLOGY
Language
영어
ISSN
0938-7994
Citation Volume
33
Citation Number
3
Citation Start Page
1973
Citation End Page
1981
Appears in Collections:
Medicine > Nursing
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.