KLI

Development of Machine Learning Algorithms for Application in Major Performance Enhancement in the Selective Catalytic Reduction (SCR) System

Metadata Downloads
Abstract
Machine learning is used in this study to deal with the reduction in the design period and major performance improvement of the selective catalyst reduction system. The selective catalyst reduction system helps in the reduction in NOx emission in the diesel engine. The existing methods for the design and performance improvement of selective catalyst reduction systems tend to be inefficient, due to layout changes that require modification when mounting a vehicle based on previously designed models. There are some factors that can affect the design of the diesel engine selective catalyst reduction system that can be identified by applying an optimized design. The Taguchi orthogonal array design is used with the eight factors and three levels of the main design factors. The distance of the urea injector, the distance of the mixer, the inflow angle of the exhaust gas, the angle of the urea injector, the angle of the mixer, the mounting angle in the direction of rotation of the mixer inside the selective catalyst reduction pipe, the number of mixer blades, the and bending angle of the mixer blade are identified as the eight major factors involved. These factors can also be considered manufacturing factors and can be established through machine learning. Machine learning has the advantage of being more efficient compared to other methods in determining the relationship between the data for each mutual factor. Machine learning can help in reducing processing time, which can further decrease the cost of the design analysis and improve the performance of the selective catalyst reduction system. This study shows that the results are statistically significant as the p values of the mixer blade number and cone length are lower than 0.05.
Author(s)
Development of Machine Learning Algorithms for Application in Major Performance Enhancement in the Selective Catalytic Reduction (SCR) System
Issued Date
2023
Sunghun Kim
Youngjin Park
Seungbeom Yoo
Ocktaeck Lim
Bernike Febriana Samosir
Type
Article
Keyword
machine learningdesign of Taguchi orthogonal matrixuniformity indexinjection simulationselective catalyst reductionmixer
DOI
10.3390/su15097077
URI
https://oak.ulsan.ac.kr/handle/2021.oak/17571
Publisher
SUSTAINABILITY
Language
영어
ISSN
2071-1050
Citation Volume
15
Citation Number
9
Citation Start Page
1
Citation End Page
20
Appears in Collections:
Engineering > Mechanical and Automotive Engineering
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.