KLI

Deep Learning-based Approach to Predict Pulmonary Function at Chest CT

Metadata Downloads
Abstract
Background
Low-dose chest CT screening is recommended for smokers with the potential for lung function abnormality, but its role in predicting lung function remains unclear.

Purpose
To develop a deep learning algorithm to predict pulmonary function with low-dose CT images in participants using health screening services.

Materials and Methods
In this retrospective study, participants underwent health screening with same-day low-dose CT and pulmonary function testing with spirometry at a university affiliated tertiary referral general hospital between January 2015 and December 2018. The data set was split into a development set (model training, validation, and internal test sets) and temporally independent test set according to first visit year. A convolutional neural network was trained to predict the forced expiratory volume in the first second of expiration (FEV1) and forced vital capacity (FVC) from low-dose CT. The mean absolute error and concordance correlation coefficient (CCC) were used to evaluate agreement between spirometry as the reference standard and deep-learning prediction as the index test. FVC and FEV1 percent predicted (hereafter, FVC% and FEV1%) values less than 80% and percent of FVC exhaled in first second (hereafter, FEV1/FVC) less than 70% were used to classify participants at high risk.

Results
A total of 16 148 participants were included (mean age, 55 years ± 10 [SD]; 10 981 men) and divided into a development set (n = 13 428) and temporally independent test set (n = 2720). In the temporally independent test set, the mean absolute error and CCC were 0.22 L and 0.94, respectively, for FVC and 0.22 L and 0.91 for FEV1. For the prediction of the respiratory high-risk group, FVC%, FEV1%, and FEV1/FVC had respective accuracies of 89.6% (2436 of 2720 participants; 95% CI: 88.4, 90.7), 85.9% (2337 of 2720 participants; 95% CI: 84.6, 87.2), and 90.2% (2453 of 2720 participants; 95% CI: 89.1, 91.3) in the same testing data set. The sensitivities were 61.6% (242 of 393 participants; 95% CI: 59.7, 63.4), 46.9% (226 of 482 participants; 95% CI: 45.0, 48.8), and 36.1% (91 of 252 participants; 95% CI: 34.3, 37.9), respectively.

Conclusion
A deep learning model applied to volumetric chest CT predicted pulmonary function with relatively good performance.
Author(s)
Hyunjung ParkJihye YunSang Min LeeHye Jeon HwangJoon Beom SeoYoung Ju JungJeongeun HwangSe Hee LeeSei Won LeeNamkug Kim
Issued Date
2023
Type
Article
DOI
10.1148/radiol.221488
URI
https://oak.ulsan.ac.kr/handle/2021.oak/17673
Publisher
RADIOLOGY
Language
영어
ISSN
0033-8419
Citation Volume
307
Citation Number
2
Citation Start Page
1
Citation End Page
11
Appears in Collections:
Medicine > Nursing
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.