KLI

Microcurvature Controllable Metal-Organic Framework Nanoagents Capable of Ice-Lattice Matching for Cellular Cryopreservation

Metadata Downloads
Abstract
Ice-binding proteins (IBPs) produced by psychrophilic organisms to adapt for the survival of psychrophiles in subzero conditions have received illustrious interest as a cryopreservation agent required for cells and tissues to completely recover after freezing/thawing. Depressing water-freezing point and avoiding ice-crystal growth affect their activities which are closely related to the presence of ice crystal well-matched binding moiety. The interaction of IBPs with ice and water is critical in enhancing their freeze avoidance against cell or tissue damage. Metal-organic frameworks (MOFs) with a controllable lattice at the molecular level and a size at the nanometer scale can offer periodically ordered ice-binding sites by modifying organic linkers and controlling microcurvature at the ice surface. Herein, zirconium (Zr)-based MOF-801 nanoparticles (NPs) with good biocompatibility were used as a cryoprotectant that is well dispersed and colloidal-stable in an aqueous solution. The MOF NP size was precisely controlled, and 10, 35, 100, and 250 nm NPs were prepared. The specific IBPs-mimicking pendants (valine and threonine) were simply introduced into the MOF NP-surface through the acrylate-based functionalization to endow with hydrophilic and hydrophobic dualities. When small-sized MOF-801 NPs were attached to ice, they confined ice growth in high curvature between the adsorption sites because of the decreased radius of the convex area of the growth region, leading to highly enhanced ice recrystallization inhibition (IRI). Surface-functionalized MOF NPs could increase the number of anchored clathrate water molecules with hydrophilic/hydrophobic balance of the ice-binding moiety, effectively inhibiting ice growth. The MOF-801 NPs were biocompatible with various cell lines regardless of concentration or NP surface-functionalization, whereas the smaller-sized surface-functionalized NPs showed a good cell recovery rate after freezing/thawing by induction of IRI. This study provides a strategy for the fabrication of low-cost, high-volume antifreeze nanoagents that can extend useful applications to organ transplantation, cord blood storage, and vaccines/drugs.
Author(s)
Nayeong JeonIn-Ho JeongEunyeong ChoIlhyung ChoiJiyeon LeeEun Hee HanHee Jung LeePeter C W LeeEunji Lee
Issued Date
2023
Type
Article
Keyword
cryopreservationmicrocurvaturemetal-organic
DOI
10.1021/jacsau.2c00562
URI
https://oak.ulsan.ac.kr/handle/2021.oak/17688
Publisher
JACS Au
Language
영어
ISSN
2691-3704
Citation Volume
3
Citation Number
3
Citation Start Page
154
Citation End Page
164
Appears in Collections:
Medicine > Nursing
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.