KLI

확률밀도함수를 사용한 개선된 난류 확산모형에 관한 연구

Metadata Downloads
Alternative Title
A Study on the Improved Turbulent Diffusion Model using Probability Density Function
Abstract
난류 유동장내의 스칼라 확산의 문제를 해석하기 위해 최근 널리 사용되기 시작하고 있는 확률밀도함수를 사용한 모형들에서 문제점으로 남아 있는 분자수준의 확산에 관한 모형을 개선하기 위하여 Langevin 방정식을 기반으로 하여 조건 평균 스칼라 소산률을 도입함으로써 스칼라의 경계조건을 만족시키는 새로운 모형을 제안하였다. 이 모형을 시험하기 위하여 통계적으로 균일한 천이 난류장 내의 통계적으로 균일한 단일 스칼라의 확률밀도 함수의 발달과정을 계산하여 알려진 직접수치모사(DNS)와 비교한 결과 기존의 모형들에 비해 정성적인 특성은 물론 정량적으로도 매우 잘 일치하는 결과를 얻을 수 있었다.
The use of probability density function in the modeling of scalar diffusion problem in turbulent flow has been wide spread in recent years. But, there remains an enduring problem in models for molecular scale diffusion term. In this study, a new model is proposed which is built from the Langevin equation and is modified by introducing conditional mean scalar dissipation to satisfy scalar boundedness. This model has been tested for the case of statitically homogeneous scalar field embeded on the decaying homogeneous turbulence. Ithas been found that the result compares well with DNS data.
The use of probability density function in the modeling of scalar diffusion problem in turbulent flow has been wide spread in recent years. But, there remains an enduring problem in models for molecular scale diffusion term. In this study, a new model is proposed which is built from the Langevin equation and is modified by introducing conditional mean scalar dissipation to satisfy scalar boundedness. This model has been tested for the case of statitically homogeneous scalar field embeded on the decaying homogeneous turbulence. Ithas been found that the result compares well with DNS data.
Author(s)
손창호
Issued Date
1998
Type
Research Laboratory
URI
https://oak.ulsan.ac.kr/handle/2021.oak/4038
http://ulsan.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002025097
Alternative Author(s)
Son, Chang Ho
Publisher
공학연구논문집
Language
kor
Rights
울산대학교 저작물은 저작권에 의해 보호받습니다.
Citation Volume
29
Citation Number
2
Citation Start Page
319
Citation End Page
333
Appears in Collections:
Research Laboratory > Engineering Research
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.