KLI

한국 경찰 인력 증가요인의 인과성 추론을 위한 회귀모형 적용에 관한 연구

Metadata Downloads
Alternative Title
A Study of Increasing factors in the police manpower of Korea
Abstract
본 연구는 관련 문헌 분석을 통해 그리고 회귀모형의 통계적 이론들의 규명과 정책자료의 컴퓨터 처리 분석을 통해, 한국 경찰 인력 증가요인의 인과성 추론을 위한 회귀모형 적용상의 특성들에 대해 분석해 보려고 했다. 이러한 노력은 회귀모형의 활용에 의해 한국 경찰 인력 증가 경향의 분석을 통해, 정책학적 관점에서 한국 행정의 개별적 이론화를 규명하려 했으며 더 나아가선 미래 한국 경찰의 인력 증가 요인을 예측하려는 데 경주되었다.

한국 행정의 이론적 구성요소는 한국 행정 현상에 대한 설명이나 이해의 영역뿐 아니라 정책 분석적 맥락에서 행정적 문제?? 해결하는 범주까지 확산되어져 있다 .이런 이론들에서 도출된 방법들이나 접근법들은 규범적이고 거시적인 차원으로만 국한되는 것이 아니라 분석의 실증적이고 현상론적인 양태로 활용되어 지고 있다.

이것이 의미하는 바는 명확한 규범적 분석의 논리를 강조하면서도 행정현상의 분석에 실증적이고 계량적인 방법론을심도있게 적용한다는 것이다.

회귀모형의 한국경찰 인력 사례에 대한 적용은 이러한 계량적 접근이 행정이론의 발전에 도움이 될 수 있고 정책결정, 집행 및 평가의 문제를 해결한ㄴ데도 조력할 수 있다는 점을 보여주고 있다.

본 연구 분석의 결과는 미래에 있어 한국 경찰 인력 증가에 영향을 끼칠 수 있는 영향력있는 요인들로 다음과 같은 것을 제시하고 있다.

1.교통사고수 2.도시수 3.예산 4.경찰관서수 5.자동차대수

본 연구는 또한 이러한 요인들 중 가장 주된 영향 요인은 교통사고수라는 것을 밝혀냈는데 이것이 의미하는 바는 교통사고사가 경찰인력 증가와 깊은 상관관계를 지닐 뿐 아니라 인과성 역시 지니고 있음을 의미한다. 따라서 본 연구는 치안당국이 경찰 인력 증가 요인들-특히 교통사고수-에 주된 관심을 경주할 것과 이러한 상관성과 인과성을 이해해주길 촉구하고 있으며, 관련 정책 결정자는 이 분석에 근거해 경찰 인력의 적정규모를 심사숙고해 결정하여야 됨을 권고하고 있다.
The purpose of this study is to analyze the characteristics of the application of regression model to causal relationship inferences of police manpower increasing factors in Korea through a survey of the literature, leading to identification of statistical theories of regression model, and to computer processing analysis of policy raw data. This effort to identify an ideographic theory of korean public administration, espectially, in the view of the policy sciences, through the analysis of korean police manpower increasing trends, by utilizing regression model, extends its focus to forecasting the futrue korean police manpower increasing factor.

the theoretical component of public administration in korea deals not only with korean pulbic adminstiration phenomena but also with solving some administative problems in the context of policy analysis.

The methods or approaches to derive such theories are limited to a normative dimension but utilize empirical and phenomenological modes of analysis. It means that empirical quantitative methods are heavily applied in analyzing administrative phenomena along with emphasizing clear logic of normative anlaysis.

An application of regression model to korean police manpower case show that these quantitative approaches will be helpful to develop the theory of public administration and solve the problem of policy making, implementation, adn evaluation.

The results of this analysis indicate that the influential factors expected to affect korean police manpower increasing in the future are:

1.the number of traffic assidents

2.the number of cities

3.police budget

4.the number of police boxes

5.the number of autocars

The study also predicts that the most powerful influential factor is the number of traffic accidents.

This means that the number of traffic accidents deeply correlates not only the police manpower increase but also causally relates it.

Therefore, This study recommends that police authoritied concerns the police manpower increasing factors, especially, the number of traffic accidnets, and understand this correlation and causal relationship.

The study also prescribes that policy maker decides sincerely the optimal size of police manpower according to this analysis.
The purpose of this study is to analyze the characteristics of the application of regression model to causal relationship inferences of police manpower increasing factors in Korea through a survey of the literature, leading to identification of statistical theories of regression model, and to computer processing analysis of policy raw data. This effort to identify an ideographic theory of korean public administration, espectially, in the view of the policy sciences, through the analysis of korean police manpower increasing trends, by utilizing regression model, extends its focus to forecasting the futrue korean police manpower increasing factor.

the theoretical component of public administration in korea deals not only with korean pulbic adminstiration phenomena but also with solving some administative problems in the context of policy analysis.

The methods or approaches to derive such theories are limited to a normative dimension but utilize empirical and phenomenological modes of analysis. It means that empirical quantitative methods are heavily applied in analyzing administrative phenomena along with emphasizing clear logic of normative anlaysis.

An application of regression model to korean police manpower case show that these quantitative approaches will be helpful to develop the theory of public administration and solve the problem of policy making, implementation, adn evaluation.

The results of this analysis indicate that the influential factors expected to affect korean police manpower increasing in the future are:

1.the number of traffic assidents

2.the number of cities

3.police budget

4.the number of police boxes

5.the number of autocars

The study also predicts that the most powerful influential factor is the number of traffic accidents.

This means that the number of traffic accidents deeply correlates not only the police manpower increase but also causally relates it.

Therefore, This study recommends that police authoritied concerns the police manpower increasing factors, especially, the number of traffic accidnets, and understand this correlation and causal relationship.

The study also prescribes that policy maker decides sincerely the optimal size of police manpower according to this analysis.
Author(s)
이병철
Issued Date
1988
Type
Research Laboratory
URI
https://oak.ulsan.ac.kr/handle/2021.oak/4821
http://ulsan.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002025002
Alternative Author(s)
Lee,Byung-Chul
Publisher
연구논문집
Language
kor
Rights
울산대학교 저작물은 저작권에 의해 보호받습니다.
Citation Volume
19
Citation Number
2
Citation Start Page
57
Citation End Page
78
Appears in Collections:
Research Laboratory > University of Ulsan Report
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.