KLI

Derivation of the Tensor-Products of ?? -algebras

Metadata Downloads
Alternative Title
?? -대수들의 텐서적에서의 미분
Abstract
A?B가 C?-대수일 때, A 혹은 B 가 외부미분(outer derivation)을 갖으면 A?B는 외부 미분을 갖는다. 이 논문에서는 A, B가 모두 내부미분(inner derivation)만을 갖는 경우 중 A가 Von Neumann대수이고 B가 가환 C?-대수일 때 A?B가 내부미분만을 갖음을 보였다.
Let A and B be C?-algebras. If A ro B has outer derivations, A?B has outer derivations. Among the case of A and B with only inner derivations, we are going to show that if A is a Von Neuman algebra and B is a commutative algebra, then every derivation of A?B is inner.
Let A and B be C?-algebras. If A ro B has outer derivations, A?B has outer derivations. Among the case of A and B with only inner derivations, we are going to show that if A is a Von Neuman algebra and B is a commutative algebra, then every derivation of A?B is inner.
Author(s)
Jang,Sun-Young
Issued Date
1983
Type
Research Laboratory
URI
https://oak.ulsan.ac.kr/handle/2021.oak/4949
http://ulsan.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002025290
Alternative Author(s)
장선영
Publisher
연구논문집
Language
eng
Rights
울산대학교 저작물은 저작권에 의해 보호받습니다.
Citation Volume
14
Citation Number
2
Citation Start Page
377
Citation End Page
378
Appears in Collections:
Research Laboratory > University of Ulsan Report
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.