KLI

Measurability on the Ordered Topological Vector Lattice

Metadata Downloads
Alternative Title
순서 위상 벡터 격자위에서 정의된 가측도
Abstract
순서 위상 벡터 격자위에서 정의된 가합의 기본성질은 H. Anton과 W.J. Pervin에 의하여 연구되었다. 이 논문에서는 그들의 방법을 확장하여 양범함수에 관한 Fatou 보조정리와 Lebesgue수렴정리에 유사한 몇개의 기본정리를 보이고, 마지막으로 순서위상벡터 격자위에서 정의된 가측의 성질을 소개하고자 한다.
The basic properties of the I-summable class S(I) on an ordered topological vector lattice has been studied by H. Anton and W.J. Pervin. Extending their methods in this paper, we are going to give some fundamental theorems which are the analogues for the positive functional I of Fatou's lemma and Lebesgue convergence theorem.

Finally, we introduce I-measurable on the ordered topological vector lattice.
The basic properties of the I-summable class S(I) on an ordered topological vector lattice has been studied by H. Anton and W.J. Pervin. Extending their methods in this paper, we are going to give some fundamental theorems which are the analogues for the positive functional I of Fatou's lemma and Lebesgue convergence theorem.

Finally, we introduce I-measurable on the ordered topological vector lattice.
Author(s)
Lee,Je-Yoon
Issued Date
1982
Type
Research Laboratory
URI
https://oak.ulsan.ac.kr/handle/2021.oak/5011
http://ulsan.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002025432
Alternative Author(s)
이제윤
Publisher
연구논문집
Language
eng
Rights
울산대학교 저작물은 저작권에 의해 보호받습니다.
Citation Volume
13
Citation Number
1
Citation Start Page
175
Citation End Page
178
Appears in Collections:
Research Laboratory > University of Ulsan Report
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.