On the Results of Invariant Sets Under Translation for Probability Measure
- Alternative Title
- 확률측도의 변화에서 불변인 집합의 결과에 대하여
- Abstract
- Probability measure μ의 characteristic 함구가 0이 되는 집합이 유한이면 weakly complete하다는 것이 이미 입증 되었지만 그 결과를 compact 상에서도 성립함을 증명한다.
Let ??(t) denote the Fourier Transorm of probability measure. if s(μ)={t
(t)=0} consists of finitely many elements then μ is weakly complete. We shall show that if S(μ) is compact then μ is weakly complete.
Let ??(t) denote the Fourier Transorm of probability measure. if s(μ)={t
(t)=0} consists of finitely many elements then μ is weakly complete. We shall show that if S(μ) is compact then μ is weakly complete.
- Author(s)
- Kim, Joung Kook
- Issued Date
- 1980
- Type
- Research Laboratory
- URI
- https://oak.ulsan.ac.kr/handle/2021.oak/5046
http://ulsan.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002025484
- Alternative Author(s)
- 김정국
- Publisher
- 연구논문집
- Language
- eng
- Rights
- 울산대학교 저작물은 저작권에 의해 보호받습니다.
- Citation Volume
- 11
- Citation Number
- 2
- Citation Start Page
- 293
- Citation End Page
- 295
-
Appears in Collections:
- Research Laboratory > University of Ulsan Report
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.