KLI

The Solution of Certain Singular Integral Equations

Metadata Downloads
Alternative Title
어떤 특이 적분 방정식의 해법
Abstract
특이 적분방정식 ??은 Kernel K()와 h()가 어떤 解析조건을 만족하면, Riemann-Hilbert 경계치 문제로 변형하지 않고서도 좀더 간단한 방법에 의하여 풀릴 수 있다.

여기서는 단위원 위에서 두개의 특이점을 갖는 함수를 Kernel로 하는 특이 적분방정식 ??의 해를 Peters의 방법에 따라 구하였다.
The singular integral equation of the form ?? can also be solved by a more elementaty method not only by a standard procedure (reducing to the Riemann-Hibert boundary value problem) provided K() and h()are required to satisfy certain analyticity condition.

Here, according to the Peters' method, the solution of the singular integral equation of the form ?? Where kernels have two singular points(poles) on the unit circle is explicitly given in closed form.
The singular integral equation of the form ?? can also be solved by a more elementaty method not only by a standard procedure (reducing to the Riemann-Hibert boundary value problem) provided K() and h()are required to satisfy certain analyticity condition.

Here, according to the Peters' method, the solution of the singular integral equation of the form ?? Where kernels have two singular points(poles) on the unit circle is explicitly given in closed form.
Author(s)
Kim,Yong In
Issued Date
1977
Type
Research Laboratory
URI
https://oak.ulsan.ac.kr/handle/2021.oak/5108
http://ulsan.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002025590
Alternative Author(s)
김용인
Publisher
연구논문집
Language
eng
Rights
울산대학교 저작물은 저작권에 의해 보호받습니다.
Citation Volume
8
Citation Number
1
Citation Start Page
15
Citation End Page
18
Appears in Collections:
Research Laboratory > University of Ulsan Report
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.