KLI

An Attention Model With Transfer Embeddings to Classify Pneumonia-Related Bilingual Imaging Reports: Algorithm Development and Validation

Metadata Downloads
Abstract
-------울산의대 소속 미표기 반려-------------
Background: In the analysis of electronic health records, proper labeling of outcomes is mandatory. To obtain proper information from radiologic reports, several studies were conducted to classify radiologic reports using deep learning. However, the classification of pneumonia in bilingual radiologic reports has not been conducted previously.

Objective: The aim of this research was to classify radiologic reports into pneumonia or no pneumonia using a deep learning method.

Methods: A data set of radiology reports for chest computed tomography and chest x-rays of surgical patients from January 2008 to January 2018 in the Asan Medical Center in Korea was retrospectively analyzed. The classification performance of our long short-term memory (LSTM)-Attention model was compared with various deep learning and machine learning methods. The area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve, sensitivity, specificity, accuracy, and F1 score for the models were compared.

Results: A total of 5450 radiologic reports were included that contained at least one pneumonia-related word. In the test set (n=1090), our proposed model showed 91.01% (992/1090) accuracy (AUROCs for negative, positive, and obscure were 0.98, 0.97, and 0.90, respectively). The top 3 performances of the models were based on FastText or LSTM. The convolutional neural network-based model showed a lower accuracy 73.03% (796/1090) than the other 2 algorithms. The classification of negative results had an F1 score of 0.96, whereas the classification of positive and uncertain results showed a lower performance (positive F1 score 0.83; uncertain F1 score 0.62). In the extra-validation set, our model showed 80.0% (642/803) accuracy (AUROCs for negative, positive, and obscure were 0.92, 0.96, and 0.84, respectively).

Conclusions: Our method showed excellent performance in classifying pneumonia in bilingual radiologic reports. The method could enrich the research on pneumonia by obtaining exact outcomes from electronic health data.

Keywords: attention; classification; clinical data; deep learning; electronic health record; machine learning; medical imaging; model; natural language process; pneumonia.
Author(s)
최창민Bo Kyung SeoEun Byul LeeHyung ParkMin Song
Issued Date
2021
Type
Article
Keyword
BilingualismClassificationDatasetsDeep learningElectronic health recordsLanguageMedical imagingmethodsMultimediaNatural languageNeural networksPneumoniaX-rays
DOI
10.2196/24803
URI
https://oak.ulsan.ac.kr/handle/2021.oak/7139
https://ulsan-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_cdi_doaj_primary_oai_doaj_org_article_f4c9e6f956ff4c508acec0d0b6241e18&context=PC&vid=ULSAN&lang=ko_KR&search_scope=default_scope&adaptor=primo_central_multiple_fe&tab=default_tab&query=any,contains,An%20Attention%20Model%20With%20Transfer%20Embeddings%20to%20Classify%20Pneumonia-Related%20Bilingual%20Imaging%20Reports:%20Algorithm%20Development%20and%20Validation&offset=0&pcAvailability=true
Publisher
JMIR Medical Informatics
Location
캐나다
Language
영어
ISSN
2291-9694
Citation Volume
9
Citation Number
5
Citation Start Page
24803
Citation End Page
24803
Appears in Collections:
Medicine > Medicine
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.