Radiomics and deep learning in liver diseases
- Abstract
- Recently, radiomics and deep learning have gained attention as methods for computerized image analysis. Radiomics and deep learning can perform diagnostic or predictive tasks using high-dimensional image-derived features and have the potential to expand the capabilities of liver imaging beyond the scope of traditional visual image analysis. Recent research has demonstrated the potential of these techniques in various fields of liver imaging, including staging of liver fibrosis, prognostication of malignant liver tumors, automated detection and characterization of liver tumors, automated abdominal organ segmentation, and body composition analysis. However, because most of the previous studies were preliminary and focused mainly on technical feasibility, further clinical validation is required for the application of radiomics and deep learning in clinical practice. In this review, we introduce the technical aspects of radiomics and deep learning and summarize the recent studies on the application of these techniques in liver radiology.
- Author(s)
- 박범우; 박효정; 성유섭; 이승수
- Issued Date
- 2021
- Type
- Article
- Keyword
- deep learning; liver; machine learning; radiology; radiomics
- DOI
- 10.1111/jgh.15414
- URI
- https://oak.ulsan.ac.kr/handle/2021.oak/7352
https://ulsan-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_cdi_proquest_miscellaneous_2501259585&context=PC&vid=ULSAN&lang=ko_KR&search_scope=default_scope&adaptor=primo_central_multiple_fe&tab=default_tab&query=any,contains,Radiomics%20and%20deep%20learning%20in%20liver%20diseases&offset=0&pcAvailability=true
- Publisher
- JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY
- Location
- 대한민국
- Language
- 영어
- ISSN
- 0815-9319
- Citation Volume
- 36
- Citation Number
- 3
- Citation Start Page
- 561
- Citation End Page
- 568
-
Appears in Collections:
- Medicine > Medicine
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.