KLI

A New Human Leukocyte Antigen Typing Algorithm Combined With Currently Available Genotyping Tools Based on Next-Generation Sequencing Data and Guidelines to Select the Most Likely Human Leukocyte Antigen Genotype

Metadata Downloads
Abstract
Background

High-precision human leukocyte antigen (HLA) genotyping is crucial for anti-cancer immunotherapy, but existing tools predicting HLA genotypes using next-generation sequencing (NGS) data are insufficiently accurate. Materials and Methods

We compared availability, accuracy, correction score, and complementary ratio of eight HLA genotyping tools (OptiType, HLA-HD, PHLAT, seq2HLA, arcasHLA, HLAscan, HLA*LA, and Kourami) using 1,005 cases from the 1000 Genomes Project data. We created a new HLA-genotyping algorithm combining tools based on the precision and the accuracy of tools' combinations. Then, we assessed the new algorithm's performance in 39 in-house samples with normal whole-exome sequencing (WES) data and polymerase chain reaction-sequencing-based typing (PCR-SBT) results. Results

Regardless of the type of tool, the calls presented by more than six tools concordantly showed high accuracy and precision. The accuracy of the group with at least six concordant calls was 100% (97/97) in HLA-A, 98.2% (112/114) in HLA-B, 97.3% (142/146) in HLA-C. The precision of the group with at least six concordant calls was over 98% in HLA-ABC. We additionally calculated the accuracy of the combination tools considering the complementary ratio of each tool and the accuracy of each tool, and the accuracy was over 98% in all groups with six or more concordant calls. We created a new algorithm that matches the above results. It was to select the HLA type if more than six out of eight tools presented a matched type. Otherwise, determine the HLA type experimentally through PCR-SBT. When we applied the new algorithm to 39 in-house cases, there were more than six matching calls in all HLA-A, B, and C, and the accuracy of these concordant calls was 100%. Conclusions

HLA genotyping accuracy using NGS data could be increased by combining the current HLA genotyping tools. This new algorithm could also be useful for preliminary screening to decide whether to perform an additional PCR-based experimental method instead of using tools with NGS data.
Author(s)
공경엽김수연김영애김정은서정한송성재송인혜이미선이희진
Issued Date
2021
Type
Article
Keyword
HLA genotypeHLA typing algorithmhuman leukocyte antigen (HLA)immunotherapyneoantigennext-generation sequencing data (NGS)
DOI
10.3389/fimmu.2021.688183
URI
https://oak.ulsan.ac.kr/handle/2021.oak/8230
https://ulsan-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_cdi_doaj_primary_oai_doaj_org_article_b82fe310d48140da8396525a1657a637&context=PC&vid=ULSAN&lang=ko_KR&search_scope=default_scope&adaptor=primo_central_multiple_fe&tab=default_tab&query=any,contains,A%20New%20Human%20Leukocyte%20Antigen%20Typing%20Algorithm%20Combined%20With%20Currently%20Available%20Genotyping%20Tools%20Based%20on%20Next-Generation%20Sequencing%20Data%20and%20Guidelines%20to%20Select%20the%20Most%20Likely%20Human%20Leukocyte%20Antigen%20Genotype&offset=0&pcAvailability=true
Publisher
FRONTIERS IN IMMUNOLOGY
Location
스위스
Language
영어
ISSN
1664-3224
Citation Volume
12
Citation Number
1
Citation Start Page
0
Citation End Page
0
Appears in Collections:
Medicine > Medicine
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.