ECG data dependency for atrial fibrillation detection based on residual networks
- Abstract
- Atrial fibrillation (AF) is an arrhythmia that can cause blood clot and may lead to stroke and heart failure. To detect AF, deep learning-based detection algorithms have recently been developed. However, deep learning models were often trained with limited datasets and were evaluated within the same datasets, which makes their performance generally drops on the external datasets, known as data dependency. For this study, three different databases from PhysioNet were used to investigate the data dependency of deep learning-based AF detection algorithm using the residual neural network (Resnet). Resnet 18, 34, 50 and 152 model were trained with raw electrocardiogram (ECG) signal extracted from independent database. The highest accuracy was about 98-99% which is evaluation results of test dataset from the own database. On the other hand, the lowest accuracy was about 53-92% which was evaluation results of the external dataset extracted from different source. There are data dependency according to the train dataset and the test dataset. However, the data dependency decreased as a large amount of train data.
- Author(s)
- 서효창; 오석; 김현빈; 주세경
- Issued Date
- 2021
- Type
- Article
- Keyword
- Atrial fbrillation (AF); Dependency; AI
- DOI
- 10.1038/s41598-021-97308-1
- URI
- https://oak.ulsan.ac.kr/handle/2021.oak/8931
https://ulsan-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_cdi_doaj_primary_oai_doaj_org_article_0da4d25ba9034d199e05998b2199c177&context=PC&vid=ULSAN&lang=ko_KR&search_scope=default_scope&adaptor=primo_central_multiple_fe&tab=default_tab&query=any,contains,ECG%20data%20dependency%20for%20atrial%20fibrillation%20detection%20based%20on%20residual%20networks&offset=0&pcAvailability=true
- Publisher
- SCIENTIFIC REPORTS
- Location
- 영국
- Language
- 한국어
- ISSN
- 2045-2322
- Citation Volume
- 11
- Citation Number
- 18256
- Citation Start Page
- 0
- Citation End Page
- 0
-
Appears in Collections:
- Engineering > Medical Engineering
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.