KLI

Integrated Feature Pyramid Network With Feature Aggregation for Traffic Sign Detection

Metadata Downloads
Abstract
Traffic sign detection is a critical task in the visual system of the Advanced Driver Assistance System (ADAS) and the Automated Driving System (ADS). Although the general object detection has achieved promising results by using Feature Pyramid Network (FPN) in recent years, we still observed that FPN cannot obtain satisfactory results in traffic sign detection because the size and class distribution of traffic signs are extremely unbalanced. To overcome this problem, a novel Plug-and-Play neck network Integrated Feature Pyramid Network with Feature Aggregation (IFA-FPN) is proposed in this paper based on the statistical characteristics of traffic signs. First, a lightweight operation is introduced to fully utilize the model and improve the inference speed of the model. Second, an Integrated Operation (IO) is introduced to solve the imbalance problem of Region-of-Interests (RoIs) in pyramid levels. Third, we introduce a Feature Aggregation (FA) structure to strengthen the feature representation capacity of feature maps, thereby enhancing the network robustness against the size discrepancy of traffic signs. The experiments are performed on three mainstream datasets, i.e., the German Traffic Sign Detection Benchmark (GTSDB), Swedish Traffic Sign Dataset (STSD), and Tsinghua-Tencent 100k dataset (TT100k). The experimental results demonstrate the superiority of the proposed IFA-FPN in the traffic sign detection tasks. Specifically, when the proposed IFA-FPN is applied to the Cascade RCNN, it achieves 80.3% mAP in GTSDB which surpasses FPN by 9.9%, 65.2% in mAP in STSD which surpasses FPN by 3.5%, and 93.6% in mAP in TT100k which surpasses FPN by 1.6%.Traffic sign detection is a critical task in the visual system of the Advanced Driver Assistance System (ADAS) and the Automated Driving System (ADS). Although the general object detection has achieved promising results by using Feature Pyramid Network (FPN) in recent years, we still observed that FPN cannot obtain satisfactory results in traffic sign detection because the size and class distribution of traffic signs are extremely unbalanced. To overcome this problem, a novel Plug-and-Play neck network Integrated Feature Pyramid Network with Feature Aggregation (IFA-FPN) is proposed in this paper based on the statistical characteristics of traffic signs. First, a lightweight operation is introduced to fully utilize the model and improve the inference speed of the model. Second, an Integrated Operation (IO) is introduced to solve the imbalance problem of Region-of-Interests (RoIs) in pyramid levels. Third, we introduce a Feature Aggregation (FA) structure to strengthen the feature representation capacity of feature maps, thereby enhancing the network robustness against the size discrepancy of traffic signs. The experiments are performed on three mainstream datasets, i.e., the German Traffic Sign Detection Benchmark (GTSDB), Swedish Traffic Sign Dataset (STSD), and Tsinghua-Tencent 100k dataset (TT100k). The experimental results demonstrate the superiority of the proposed IFA-FPN in the traffic sign detection tasks. Specifically, when the proposed IFA-FPN is applied to the Cascade RCNN, it achieves 80.3% mAP in GTSDB which surpasses FPN by 9.9%, 65.2% in mAP in STSD which surpasses FPN by 3.5%, and 93.6% in mAP in TT100k which surpasses FPN by 1.6%.
Author(s)
당청차오 꺼조강현
Issued Date
2021
Type
Article
Keyword
Automated driving systemDetectorsdriver assistance systemfeature aggregationFeature extractionLicensesNeckObject detectionSemanticssmall object detectiontraffic sign detectionVehicles
DOI
10.1109/ACCESS.2021.3106350
URI
https://oak.ulsan.ac.kr/handle/2021.oak/9165
https://ulsan-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_cdi_ieee_primary_9519721&context=PC&vid=ULSAN&lang=ko_KR&search_scope=default_scope&adaptor=primo_central_multiple_fe&tab=default_tab&query=any,contains,Integrated%20Feature%20Pyramid%20Network%20With%20Feature%20Aggregation%20for%20Traffic%20Sign%20Detection&offset=0&pcAvailability=true
Publisher
IEEE ACCESS
Location
미국
Language
영어
ISSN
2169-3536
Citation Volume
9
Citation Number
1
Citation Start Page
117784
Citation End Page
117794
Appears in Collections:
Engineering > IT Convergence
Authorize & License
  • Authorize공개
Files in This Item:
  • There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.